[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Categorical Properties of Probabilistic Convergence Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The purpose of this paper is to discuss some categorical properties of probabilistic convergence spaces. Its main theses are: (1) the construct P-PrTop of probabilistic pretopological spaces is the extensional topological hull of the construct FTPcs of FT-diagonal probabilistic convergence spaces for every triangular norm T; (2) the construct P-PsTop of probabilistic pseudotopological spaces is the topological universe hull of FTPcs for every triangular norm T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley, New York, 1990.

    Google Scholar 

  2. Adámek, J. and Koubek, V.: Cartesian closed initial completions, Topology Appl. 11 (1980), 1–16.

    Google Scholar 

  3. Antoine, P.: Étude élémentaire des catégories d'ensembles structurés, Bull. Soc. Math. Belgique 18 (1966), 142–164, 387–414.

    Google Scholar 

  4. Bourdaud, G.: Some Cartesian closed topological categories of convergence spaces, in E. Binz and H. Herrlich (eds.), Categorical Topology, Proc. Mannheim, 1975, Lecture Notes in Math. 540, Springer, Berlin, 1976, pp. 93–108.

    Google Scholar 

  5. Brock, P. and Kent, D. C.: Approach spaces, limit tower spaces, and probabilistic convergence spaces, Appl. Categorical Structures 5 (1997), 99–110.

    Google Scholar 

  6. Cook, C. H. and Fischer, H. R.: Regular convergence spaces, Math. Ann. 174 (1967), 1–7.

    Google Scholar 

  7. Fischer, H. R.: Limesräume, Math. Ann. 137 (1959), 269–303.

    Google Scholar 

  8. Florescu, L. C.: Probabilistic convergence structures, Aequationes Math. 38 (1989), 123–145.

    Google Scholar 

  9. Frank, M. J.: Probabilistic topological spaces, J. Math. Anal. Appl. 34 (1971), 67–81.

    Google Scholar 

  10. Gierz, G. et al.: A Compendium of Continuous Lattices, Springer, Berlin, 1980.

    Google Scholar 

  11. Herrlich, H.: Cartesian closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1–16.

    Google Scholar 

  12. Herrlich, H.: Topological improvements of categories of structured sets, Topology Appl. 27 (1987), 145–155.

    Google Scholar 

  13. Herrlich, H.: Hereditary topological constructs, in Z. Frolik (ed.), General Topology and Its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp. 249–262.

    Google Scholar 

  14. Herrlich, H.: On the representability of partial morphisms in Top and related categories, in F. Borceux (ed.), Categorical Algebra and Its Applications, Proc. Louvain-La-Neuve 1987, Lecture Notes in Math. 1348, Springer, Berlin, 1988, pp. 143–153.

    Google Scholar 

  15. Herrlich, H., Lowen-Colebunders, E. and Schwarz, F.: Improving Top: PrTop and PsTop, in H. Herrlich and H. E. Porst (eds.), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp. 21–34.

    Google Scholar 

  16. Herrlich, H. and Nel, L. D.: Cartesian closed topological hulls, Proc. Amer. Math. Soc. 62 (1977), 215–222.

    Google Scholar 

  17. Kowalsky, H. J.: Limesräume und Komplettierung, Math. Nachr. 12 (1954), 301–340.

    Google Scholar 

  18. Lowen, E. and Lowen, R.: A quasitopos containing CONV and MET as full subcategories, Internat. J. Math. Math. Sci. 11 (1988), 417–438.

    Google Scholar 

  19. Lowen, E. and Lowen, R.: Topological quasitopos hulls of categories containing topological and metric objects, Cahiers Top. Geom. Diff. 30 (1989), 213–228.

    Google Scholar 

  20. Lowen, R.: Approach spaces, Math. Nachr. 141 (1989), 183–226.

    Google Scholar 

  21. Lowen, R.: Approach Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press, 1997.

  22. Richardson, G. D. and Kent, D. C.: Probabilistic convergence spaces, J. Austral. Math. Soc. Ser. A 61 (1996), 400–420.

    Google Scholar 

  23. Schwarz, F.: Hereditary topological categories and topological universes, Quaestiones Math. 10 (1986), 197–216.

    Google Scholar 

  24. Schwarz, F.: Extensional topological hulls and topological universe hulls inside the category of pseudotopological spaces, Comment. Math. Univ. Carolin. 31 (1990), 123–127.

    Google Scholar 

  25. Schwarz, F.: Description of the topological universe hull, in H. Ehrig et al. (eds.), Categorical Methods in Computer Science with Aspects from Topology, Proc. Berlin 1988, Lecture Notes in Computer Science 393, Springer, Berlin, 1989, pp. 325–332.

    Google Scholar 

  26. Schweizer, B. and Sklar, A.: Probabilistic Metric Spaces, North-Holland, New York, 1983.

    Google Scholar 

  27. Wyler, O.: Are there topoi in topology, in E. Binz and H. Herrlich (eds.), Categorical Topology, Proc. Mannheim 1975, Lecture Notes in Math. 540, Springer, Berlin, 1976, pp. 699–719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrlich, H., Zhang, D. Categorical Properties of Probabilistic Convergence Spaces. Applied Categorical Structures 6, 495–513 (1998). https://doi.org/10.1023/A:1008648428060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008648428060

Navigation