Published online by Cambridge University Press: 12 March 2014
i) We show for each context-free language L that by considering each word of L as a structure in a natural way, one turns L into a finite union of classes which satisfy a finitary analog of the characteristic properties of complete universal first order classes of structures equipped with elementary embeddings. We show this to hold for a much larger class of languages which we call free local languages, ii) We define local languages, a class of languages between free local and context-sensitive languages. Each local language L has a natural extension L ∞ to infinite words, and we prove a series of “pumping lemmas”, analogs for each local language L of the “uvxyz theorem” of context free languages: they relate the existence of large words in L or L ∞ to the existence of infinite “progressions” of words included in L, and they imply the decidability of various questions about L or L ∞. iii) We show that the pumping lemmas of ii) are independent from strong axioms, ranging from Peano arithmetic to ZF + Mahlo cardinals.
We hope that these results are useful for a model-theoretic approach to the theory of formal languages.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.