[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local convergence analysis of an inexact trust-region method for nonsmooth optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Baraldi, R.J., Kouri, D.P.: A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations. Math. Program. 20, 1–40 (2022)

    Google Scholar 

  2. Clever, D., Lang, J., Ulbrich, S., Ziems, C.: Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers. In: Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Constrained Optimization and Optimal Control for Partial Differential Equations, pp. 51–74. Springer, Basel (2012)

    Chapter  Google Scholar 

  3. Garreis, S., Ulbrich, M.: An Inexact Trust-Region Algorithm for Constrained Problems in Hilbert Space and its Application to the Adaptive Solution of Optimal Control Problems with PDEs. Technical University of Munich, Munich (2019)

    Google Scholar 

  4. Kouri, D.P., Heinkenschloss, M., Ridzal, D., van Bloemen Waanders, B.G.: A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35(4), 1847–1879 (2013)

    Article  MathSciNet  Google Scholar 

  5. Kouri, D.P., Heinkenschloss, M., Ridzal, D., van Bloemen Waanders, B.G.: Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SIAM J. Sci. Comput. 36(6), 3011–3029 (2014)

    Article  MathSciNet  Google Scholar 

  6. Kouri, D.P., Ridzal, D.: Inexact trust-region methods for PDE-constrained optimization. In: Front. PDE-Constr. Optim., pp. 83–121. Springer, New York, NY (2018)

    Chapter  Google Scholar 

  7. Muthukumar, R., Kouri, D.P., Udell, M.: Randomized sketching algorithms for low-memory dynamic optimization. SIAM J. Optim. 31(2), 1242–1275 (2021)

    Article  MathSciNet  Google Scholar 

  8. Zahr, M.J., Carlberg, K.T., Kouri, D.P.: An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids. SIAM/ASA J. Uncertain. Quantif. 7(3), 877–912 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ziems, J.C., Ulbrich, S.: Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21(1), 1–40 (2011). https://doi.org/10.1137/080743160

    Article  MathSciNet  Google Scholar 

  10. Zou, Z., Kouri, D.P., Aquino, W.: A locally adapted reduced-basis method for solving risk-averse PDE-constrained optimization problems. SIAM/ASA J. Uncertain. Quantif. 10(4), 1629–1651 (2022)

    Article  MathSciNet  Google Scholar 

  11. Josephy, N.H.: Newton’s method for generalized equations. Wisconsin University-Madison Mathematics Research Center, Madison (1979)

    Google Scholar 

  12. Josephy, N.H.: Quasi–Newton Methods for Generalized Qquations. Wisconsin University-Madison Mathematics Research Center, Madison (1979)

    Google Scholar 

  13. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to Quasi–Newton methods. Math. Comput. 28(126), 549–560 (1974)

    Article  MathSciNet  Google Scholar 

  14. Dontchev, A.L.: Generalizations of the Dennis–Moré theorem. SIAM J. Optim. 22(3), 821–830 (2012)

    Article  MathSciNet  Google Scholar 

  15. Aragón Artacho, F.J., Belyakov, A., Dontchev, A.L., López, M.: Local convergence of quasi-Newton methods under metric regularity. Comput. Optim. Appl. 58(1), 225–247 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dontchev, A.L.: Local convergence of the Newton method for generalized equations. Comptes Rendus Acad. Sci. Ser. Math. 322(4), 327–331 (1996)

    MathSciNet  Google Scholar 

  17. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, vol. 543. Springer, Cham (2009)

    Book  Google Scholar 

  18. Cibulka, R., Dontchev, A., Geoffroy, M.H.: Inexact Newton methods and Dennis–Moré theorems for nonsmooth generalized equations. SIAM J. Control Optim. 53(2), 1003–1019 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dontchev, A.L., Rockafellar, R.T.: Convergence of inexact Newton methods for generalized equations. Math. Program. 139(1), 115–137 (2013)

    Article  MathSciNet  Google Scholar 

  20. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: The Josephy–Newton method for semismooth generalized equations and semismooth SQP for optimization. Set Valued Var. Anal. 21(1), 17–45 (2013)

    Article  MathSciNet  Google Scholar 

  21. Izmailov, A.F., Solodov, M.V.: Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization. Comput. Optim. Appl. 46(2), 347–368 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kanzow, C., Lechner, T.: Globalized inexact proximal Newton-type methods for nonconvex composite functions. Comput. Optim. Appl. 78(2), 377–410 (2021)

    Article  MathSciNet  Google Scholar 

  23. Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for minimizing composite functions. SIAM J. Optim. 24(3), 1420–1443 (2014). https://doi.org/10.1137/130921428

    Article  MathSciNet  Google Scholar 

  24. Byrd, R.H., Nocedal, J., Oztoprak, F.: An inexact successive quadratic approximation method for L-1 regularized optimization. Math. Program. 157(2), 375–396 (2016)

    Article  MathSciNet  Google Scholar 

  25. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces: CMS Books in Mathematics. Springer, Cham, Switzerland (2018)

    Google Scholar 

  26. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia, PA (2000)

    Book  Google Scholar 

  27. Beck, A.: First Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017)

    Book  Google Scholar 

  28. Cartis, C., Gould, N.I.M., Toint, Ph.L.: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming. SIAM J. Optim. 21(4), 1721–1739 (2011). https://doi.org/10.1137/11082381X

    Article  MathSciNet  Google Scholar 

  29. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  30. Lin, C.-J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)

    Article  MathSciNet  Google Scholar 

  31. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, Springer, Cham (2006)

    Google Scholar 

  32. Dennis, J.E., Jr., Mei, H.H.W.: Two new unconstrained optimization algorithms which use function and gradient values. J. Optim. Theory Appl. 28, 453–482 (1979). https://doi.org/10.1007/BF00932218

    Article  MathSciNet  Google Scholar 

  33. Kelley, C.T.: Iterative Methods for Optimization, vol. 18. SIAM, Philadelphia (1999)

    Book  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. Department of Energy Office of Science and the U.S. Air Force Office of Scientific Research. This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

Funding

Advanced Scientific Computing Research, U.S. Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew P. Kouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraldi, R.J., Kouri, D.P. Local convergence analysis of an inexact trust-region method for nonsmooth optimization. Optim Lett 18, 663–680 (2024). https://doi.org/10.1007/s11590-023-02092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-023-02092-8

Keywords

Navigation