[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Variations of human cerebral and ocular blood flow during exposure to multi-axial accelerations

A mathematical modeling study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Human hemodynamic responses during exposure to multi-axial acceleration was a relatively new topic in the fields of acceleration physiology. This study aimed to focus on these responses, especially variations of blood perfusion to brain and eyes, through mathematical modeling. A mathematical model was established using lumped parameter methods, containing compartments of four heart chambers, systemic arteries and veins, circulation of typical systemic organs, and some compartments for pulmonary circulation, together with autonomic regulation considered. This model was firstly validated by using experimental data from experiment of posture change and centrifuge tests of +Gz accelerations, and then applied to analyze human hemodynamic responses to typical multi-axial accelerations. Validation results demonstrated the mathematical model could generate reasonable responses of human cardiovascular system during posture change and exposure to +Gz accelerations. Simulation results of hemodynamic responses to multi-axial accelerations depicted Gy induced significant differences of blood flow to the left and right eyes. And some contour maps were generated based on these results, which provided a quick way to estimate blood flow variations in brain and eyes during exposure to different accelerations.

This study aimed to focus on variations of blood perfusion to brain and eyes during exposure to typical multi-axial accelerations through mathematical modeling. This model was firstly validated by using experimental data from experiment of posture change and centrifuge tests of +Gz accelerations, and then applied to analyze human hemodynamic responses to typical multi-axial accelerations. Simulation results of hemodynamic responses to multi-axial accelerations depicted Gy induced significant differences of blood flow to the left and right eyes. And contour maps that generated based on these results provided a quick way to estimate blood flow variations in brain and eyes during exposure to different accelerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pollock RD, Firth RV, Storey JA et al (2019) Hemodynamic resposes and G protection afforded by three different anti-G systems. Aerosp Med Hum Perform 90:925–933

    Article  PubMed  Google Scholar 

  2. Eiken O, Kolegard R, Bergsten E et al (2007) G protection: interaction of straining maneuvers and positive pressure breathing. Aviat Space Environ Med 78:392–398

    PubMed  Google Scholar 

  3. Burton RR (1988) G-induced loss of consciousness: definition, history, current status. Aviat Space Environ Med 59:2–5

    CAS  PubMed  Google Scholar 

  4. Burton RR, Leverett SD, Michaelson ED (1974) Man at high sustained +Gz acceleration: a review. Aerosp Med 45:1115–1136

    CAS  PubMed  Google Scholar 

  5. Whinnery JE, Burton RR (1987) +Gz-induced loss of consciousness for training exposure to unconsciousness. Aviat Space Environ Med 58:468–472

    CAS  PubMed  Google Scholar 

  6. Whinnery JE, Burton RR, Boll PA, Eddy DR (1987) Characterization of the resulting incapacitation following unexpected +Gz-induced loss of consciousness. Aviat Space Environ Med 58:631–636

    CAS  PubMed  Google Scholar 

  7. Whinnery JE, Shaffstall RM (1979) Incapacitation time for G-induced loss of consciousness. Aviat Space Environ Med 50:83–85

    CAS  PubMed  Google Scholar 

  8. Whinnery JE, Shaffstall RM, Leverett SD (1978) Loss of consciousness during air combat maneuvering. Aerosp Saf 34:23–25

    Google Scholar 

  9. Wood EH, Lamber EH (1989) Objective documentation and monitoring of human Gz tolerance when unprotected and when protected by anti-G suits or M-1 type straining maneuvers alone or in combination. Saf J 19:39–48

    Google Scholar 

  10. Henry JP, Gauer OH, Kety SS et al (1951) Factors maintaining cerebral circulation during gravitational stress. J Clin Invest 30:292–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Albery WB (2004) Acceleration in other axes affects+ gz tolerance: dynamic centrifuge simulation of agile flight. Aviat Space Environ Med 75:1–6

    PubMed  Google Scholar 

  12. Xu Y, Yong W, Wei YW et al (2015) Effects of combining ± Gx or ± Gy with ± Gz acceleration on anti-G tolerance. Space Med Med Eng 28:336–340. (in Chinese)

    Google Scholar 

  13. Popplow JR, Veghte JH, Hudson KE (1983) Cardiopulmonary responses to combined lateral and vertical acceleration. Aviat Space Environ Med 54:632–636

    CAS  PubMed  Google Scholar 

  14. Rauscher FG, Brandl H, Baumbach P (2008) The effects of larger g-forces on the aberration pattern of the human eye. J Mod Opt 55:819–838

    Article  Google Scholar 

  15. Snyder MF, Rideout VC (1969) Computer simulation studies of the venous circulation. IEEE Trans Biomedl Eng 16:325–334

    Article  CAS  Google Scholar 

  16. Jaron D, Moore TW, Bai J (1988) Cardiovascular responses to acceleration stress: a computer simulation. Proc IEEE 76:700–707

    Article  Google Scholar 

  17. Whinnery JE, Hickman JR (1988) Acceleration tolerance of asymptomatic aircrew with mitral valve prolapse and significant +Gz-induced ventricular dysrhythmias. Aviat Space Environ Med 59:711–717

    CAS  PubMed  Google Scholar 

  18. Cirovic S, Walsh C, Fraser WD (2000) A mathematical model of cerebral perfusion subjected to Gz acceleration. Aviat Space Environ Med 71:514–521

    CAS  PubMed  Google Scholar 

  19. Thomas H, Shim EB, Kamm RD et al (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol 92:1239–1254

    Article  Google Scholar 

  20. Olufsen MS, Ottesen JT, Tran HT et al (2005) Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 99:1523–1537

    Article  PubMed  Google Scholar 

  21. Gisolf J, Lieshout JJV, Heusden KV et al (2004) Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol 560:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang F, Liu H (2006) Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci 56 (1):45–65

    Article  PubMed  Google Scholar 

  23. Spronck B, Martens E, Gommer ED et al (2012) A lumped parameter model of cerebral blood flow control combining cerebral autoregulation and neurovascular coupling. AJP Heart Circul Physiol 303 (9):H1143–53

    Article  CAS  Google Scholar 

  24. Moore TW, Jaron D, Hrebien L et al (1993) A mathematical model of G time-tolerance. Aviat Space Environ Med 64:947–951

    CAS  PubMed  Google Scholar 

  25. Zamanian SA (2007) Modeling and simulating human cardiovascular response to acceleration. Dissertation, Massachusetts Institute of Technology

  26. Lu HB, Zhang J, Bai J et al (2007) Mathematical modeling of high g protection afforded by various anti-g equipment and techniques. Aviat Space Environ Med 78:100–109

    PubMed  Google Scholar 

  27. Wang YW, Sun HD, Wei JN et al (2018) A mathematical model of human heart including the effects of heart contractility varying with heart rate changes. J Biomech 75:129–137

    Article  PubMed  Google Scholar 

  28. Tipton DA, Marko AR, Ratino DA (1984) The effects of acceleration forces on night vision. Aviat Space Environ Med 55:186–190

    CAS  PubMed  Google Scholar 

  29. Keijsers JMT, Leguy CAD, Huberts W et al (2016) Global sensitivity analysis of a model for venous valve dynamics. J Biomech 49:2845–2853

    Article  CAS  PubMed  Google Scholar 

  30. Ottesen JT, Danielsen M (2003) Modeling ventricular contraction with heart rate changes. J Theor Biol 222:337–346

    Article  CAS  PubMed  Google Scholar 

  31. Danielsen M (1998) Modeling of feedback mechanisms which control the heart function in a view to an implementation in cardiovascular models. Dissertation, Roskilde University

  32. Wang JH, Wang YW, Zhang J et al (2019) In vivo measurements of collapse behavior of human internal jugular vein during head-up tilt tests. Physiol Meas 40:075006

    Article  PubMed  Google Scholar 

  33. Ethier CR, Simmons CA (2007) Ocular biomechanics. In: Introductory biomechanics, from cells to organisms. Cambridge University Press, Cambridge, pp 271–274

  34. Shubrooks SJ, Leverett SD (1973) Effect of the valsalva maneuver on tolerance to +Gz acceleration. J Appl Physiol 34:460–466

    Article  PubMed  Google Scholar 

  35. Heller LJ, Mohrman DE (2010) Cardiovascular physiology. McGraw-Hill Medical, New York

    Google Scholar 

  36. Garcia JPS, Garcia PMT, Rosen R (2002) Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res 34:295–299

    Article  PubMed  Google Scholar 

  37. Labropoulos N, Watson WC, Mansour MA et al (1998) Acute effects of intermittent pneumatic compression on popliteal artery blood flow. Arch Surg 133:1072–1075

    Article  CAS  PubMed  Google Scholar 

  38. Radegran G (1997) Ultrasound doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol 83:1383–1388

    Article  CAS  PubMed  Google Scholar 

  39. Valdueza JM, von Münster T, Hoffman O et al (2000) Postural dependency of the cerebral venous outflow. Lancet 355:200–201

    Article  CAS  PubMed  Google Scholar 

  40. Cirovic S, Walsh C, Fraser WD et al (2003) The effect of posture and positive pressure breathing on the hemodynamics of the internal jugular vein. Aviat Space Environ Med 74:125– 131

    PubMed  Google Scholar 

  41. Doepp F, Schreiber SJ, Münster TV et al (2004) How does the blood leave the brain? a systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46:565–570

    Article  PubMed  Google Scholar 

  42. Niggemann P, Kuchta J, Grosskurth D et al (2011) Position dependent changes of the cerebral venous drainage-implications for the imaging of the cervical spine. Cent Eur Neurosurg 72:32–37

    Article  CAS  PubMed  Google Scholar 

  43. Frydrychowski AF, Winklewski PJ, Guminski W (2012) Influence of acute jugular vein compression on the cerebral blood flow velocity pial artery pulsation and width of subarachnoid space in humans. PLoS ONE 7:e48245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bateman GA (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 44:740–748

    Article  CAS  PubMed  Google Scholar 

  45. Ge X, Yin Z, Fan Y, Vassilevski Y, Liang F (2018) A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow. Int J Numer Method Biomed Eng 34(10):e3123

    Article  PubMed  Google Scholar 

  46. Kozlovsky P, Zaretsky U, Jaffa AJ et al (2014) General tube law for collapsible thin and thick-wall tubes. J Biomech 47(10):2378–2384

    Article  PubMed  Google Scholar 

  47. Matsuzaki Y, Ikeda T, Kitagawa T et al (1994) Analysis of flow in a two-dimensional collapsible channel using universal tube law. J Biomech Eng 116(4):469–476

    Article  CAS  PubMed  Google Scholar 

  48. Bertram CD (1987) The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes. J Biomech 20(9):863–876

    Article  CAS  PubMed  Google Scholar 

  49. Bertram CD (1982) Two modes of instability in a thick-walled collapsible tube conveying a flow. J Biomech 15(3):223–224

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Aeronautical Science Foundation of China (2017ZC51024), the Defense Industrial Technology Development Program (JCKY2016601B009), the National Natural Science Foundation of China (12072018, 11602013), the 111 Project 345 (B13003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawei Wang or Yubo Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Weipeng Li and Bitian Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLSX 10.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, B., Wang, Y. et al. Variations of human cerebral and ocular blood flow during exposure to multi-axial accelerations. Med Biol Eng Comput 60, 471–486 (2022). https://doi.org/10.1007/s11517-021-02472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02472-1

Keywords

Navigation