Abstract
Brain-inspired computing is a new technology that draws on the principles of brain science and is oriented to the efficient development of artificial general intelligence (AGI), and a brain-inspired computing system is a hierarchical system composed of neuromorphic chips, basic software and hardware, and algorithms/applications that embody this technology. While the system is developing rapidly, it faces various challenges and opportunities brought by interdisciplinary research, including the issue of software and hardware fragmentation. This paper analyzes the status quo of brain-inspired computing systems. Enlightened by some design principle and methodology of general-purpose computers, it is proposed to construct “general-purpose” brain-inspired computing systems. A general-purpose brain-inspired computing system refers to a brain-inspired computing hierarchy constructed based on the design philosophy of decoupling software and hardware, which can flexibly support various brain-inspired computing applications and neuromorphic chips with different architectures. Further, this paper introduces our recent work in these aspects, including the ANN (artificial neural network)/SNN (spiking neural network) development tools, the hardware agnostic compilation infrastructure, and the chip micro-architecture with high flexibility of programming and high performance; these studies show that the “general-purpose” system can remarkably improve the efficiency of application development and enhance the productivity of basic software, thereby being conductive to accelerating the advancement of various brain-inspired algorithms and applications. We believe that this is the key to the collaborative research and development, and the evolution of applications, basic software and chips in this field, and conducive to building a favorable software/hardware ecosystem of brain-inspired computing.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature, 2019, 575(7784): 607–617. https://doi.org/10.1038/s41586-019-1677-2.
Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530(7589): 144–147. https://doi.org/10.1038/530144a.
Maass W. Networks of spiking neurons: The third generation of neural network models. Neural Networks, 1997, 10(9): 1659–1671. https://doi.org/10.1016/S0893-6080(97)00011-7.
Qu P, Yang L, Zheng W M, Zhang Y H. A review of basic software for brain-inspired computing. CCF Trans. High Performance Computing, 2022, 4(1): 34–42. https://doi.org/10.1007/s42514-022-00092-1.
Kass R E, Amari S I, Arai K, Brown E N, Diekman C O, Diesmann M, Doiron B, Eden U T, Fairhall A L, Fiddyment G M, Fukai T, Grün S, Harrison M T, Helias M, Nakahara H, Teramae J N, Thomas P J, Reimers M, Rodu J, Rotstein H G, Shea-Brown E, Shimazaki H, Shinomoto S, Yu B M, Kramer M A. Computational neuroscience: Mathematical and statistical perspectives. Annual Review of Statistics and Its Application, 2018, 5: 183–214. https://doi.org/10.1146/annurev-statistics-041715-033733.
Plana L A, Clark D, Davidson S, Furber S, Garside J, Painkras E, Pepper J, Temple S, Bainbridge J. SpiNNaker: Design and implementation of a GALS multicore system-on-chip. ACM Journal on Emerging Technologies in Computing Systems, 2011, 7(4): 17. https://doi.org/10.1145/2043643.2043647.
Höppner S, Yan Y X, Dixius A, Scholze S, Partzsch J, Stolba M, Kelber F, Vogginger B, Neumärker F, Ellguth G, Hartmann S, Schiefer S, Hocker T, Walter D, Liu G T, Garside J D, Furber S, Mayr C. The SpiNNaker 2 processing element architecture for hybrid digital neuromorphic computing. arXiv: 2103.08392, 2021.https://arxiv.org/abs/2103.08392, Jan. 2024.
Zhang W B, Yao P, Gao B, Liu Q, Wu D, Zhang Q T, Li Y K, Qin Q, Li J M, Zhu Z H, Cai Y, Wu D B, Tang J S, Qian H, Wang Y, Wu H Q. Edge learning using a fully integrated neuro-inspired memristor chip. Science, 2023, 381(6663): 1205–1211. https://doi.org/10.1126/science.ade3483.
Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H. Fully hardware-implemented memristor convolutional neural network. Nature, 2020, 577(7792): 641–646. https://doi.org/10.1038/s41586-020-1942-4.
Nguyen A, Nguyen H, Venimadhavan S, Venkattraman A, Parent D, Wong H Y. Fully analog ReRAM neuromorphic circuit optimization using DTCO simulation framework. In Proc. the 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Sept. 2020, pp.201–204. https://doi.org/10.23919/SISPAD49475.2020.9241635.
She X Y, Long Y, Mukhopadhyay S. Improving robustness of ReRAM-based spiking neural network accelerator with stochastic spike-timing-dependent-plasticity. In Proc. the 2019 International Joint Conference on Neural Networks (IJCNN), Jul. 2019, pp.1–8. https://doi.org/10.1109/IJCNN.2019.8851825.
Kim C H, Lee S, Woo S Y, Kang W M, Lim S, Bae J H, Kim J, Lee J H. Demonstration of unsupervised learning with spike-timing-dependent plasticity using a TFT-type NOR flash memory array. IEEE Trans. Electron Devices, 2018, 65(5): 1774–1780. https://doi.org/10.1109/TED.2018.2817266.
Shouval H Z, Wang S S H, Wittenberg G M. Spike timing dependent plasticity: A consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 2010, 4: 19. https://doi.org/10.3389/fncom.2010.00019.
Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G J, Taba B, Beakes M, Brezzo B, Kuang J B, Manohar R, Risk W P, Jackson B, Modha D S. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10): 1537–1557. https://doi.org/10.1109/TCAD.2015.2474396.
Neckar A, Fok S, Benjamin B V, Stewart T C, Oza N N, Voelker A R, Eliasmith C, Manohar R, Boahen K. Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proceedings of the IEEE, 2019, 107(1): 144–164. https://doi.org/10.1109/JPROC.2018.2881432.
Davies M, Srinivasa N, Lin T H, Chinya G, Cao Y Q, Choday S H, Dimou G, Joshi P, Imam N, Jain S, Liao Y Y, Lin C K, Lines A, Liu R K, Mathaikutty D, Mccoy S, Paul A, Tse J, Venkataramanan G, Weng Y H, Wild A, Yang Y, Wang H. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 2018, 38(1): 82–99. https://doi.org/10.1109/MM.2018.112130359.
Lin C K, Wild A, Chinya G N, Cao Y Q, Davies M, Lavery D M, Wang H. Programming spiking neural networks on Intel’s Loihi. Computer, 2018, 51(3): 52–61. https://doi.org/10.1109/MC.2018.157113521.
Chen J J, Yang L, Zhang Y H. GaBAN: A generic and flexibly programmable vector neuro-processor on FPGA. In Proc. the 59th ACM/IEEE Design Automation Conference, Jul. 2022, pp.931–936. https://doi.org/10.1145/3489517.3530561.
Amir A, Datta P, Risk W P, Cassidy A S, Kusnitz J A, Esser S K, Andreopoulos A, Wong T M, Flickner M, Alvarez-Icaza R, McQuinn E, Shaw B, Pass N, Modha D S. Cognitive computing programming paradigm: A Corelet language for composing networks of neurosynaptic cores. In Proc. the 2013 International Joint Conference on Neural Networks (IJCNN), Aug. 2013, pp.1–10. https://doi.org/10.1109/IJCNN.2013.6707078.
Pei J, Deng L, Song S, Zhao M G, Zhang Y H, Wu S, Wang G R, Zou Z, Wu Z Z, He W, Chen F, Deng N, Wu S, Wang Y, Wu Y J, Yang Z Y, Ma C, Li G Q, Han W T, Li H L, Wu H Q, Zhao R, Xie Y, Shi L P. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572(7767): 106–111. https://doi.org/10.1038/s41586-019-1424-8.
Deng L, Wang G R, Li G Q, Li S C, Liang L, Zhu M H, Wu Y J, Yang Z Y, Zou Z, Pei J, Wu Z Z, Hu X, Ding Y F, He W, Xie Y, Shi L P. Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2228–2246. https://doi.org/10.1109/JSSC.2020.2970709.
Orchard G, Frady E P, Rubin D B D, Sanborn S, Shrestha S B, Sommer F T, Davies M. Efficient neuromorphic signal processing with Loihi 2. In Proc. the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2021, pp.254–259. https://doi.org/10.1109/SiPS52927.2021.00053.
Beniaguev D, Segev I, London M. Single cortical neurons as deep artificial neural networks. Neuron, 2021, 109(17): 2727–2739.e3. https://doi.org/10.1016/j.neuron.2021.07.002.
Zhang Y C, He G, Ma L, Liu X F, Hjorth J J J, Kozlov A, He Y T, Zhang S J, Kotaleski J H, Tian Y H, Grillner S, Du K, Huang T J. A GPU-based computational framework that bridges neuron simulation and artificial intelligence. Nature Communications, 2023, 14(1): 5798. https://doi.org/10.1038/s41467-023-41553-7.
Bicknell B A, Häusser M. A synaptic learning rule for exploiting nonlinear dendritic computation. Neuron, 2021, 109(24): 4001–4017.e10. https://doi.org/10.1016/j.neuron.2021.09.044.
Rueckauer B, Lungu I A, Hu Y H, Pfeiffer M, Liu S C. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience, 2017, 11: 682. https://doi.org/10.3389/fnins.2017.00682.
Ding J H, Yu Z F, Tian Y H, Huang T J. Optimal ANNSNN conversion for fast and accurate inference in deep spiking neural networks. arXiv: 2105.11654, 2021.https://arxiv.org/abs/2105.11654, Jan. 2024.
Gao H R, He J X, Wang H B, Wang T X, Zhong Z Q, Yu J Y, Wang Y, Tian M, Shi C. High-accuracy deep ANNto-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron. Frontiers in Neuroscience, 2023, 17: 1141701. https://doi.org/10.3389/fnins.2023.1141701.
Hunsberger E, Eliasmith C. Spiking deep networks with LIF neurons. arXiv: 1510.08829, 2015.https://arxiv.org/abs/1510.08829, Jan. 2024.
Wu Y J, Deng L, Li G Q, Zhu J, Xie Y, Shi L P. Direct training for spiking neural networks: Faster, larger, better. In Proc. the 33rd AAAI Conference on Artificial Intelligence, Jan. 27–Feb. 1, 2019, pp.1311–1318. https://doi.org/10.1609/aaai.v33i01.33011311.
Shrestha S B, Orchard G. SLAYER: Spike layer error reassignment in time. In Proc. the 32nd International Conference on Neural Information Processing Systems, Dec. 2018, pp.1419–1428.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z M, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J J, Chintala S. PyTorch: An imperative style, high-performance deep learning library. In Proc. the 33rd International Conference on Neural Information Processing Systems, Dec. 2019, Article No. 721.
Abadi M, Barham P, Chen J M, Chen Z F, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X Q. TensorFlow: A system for large-scale machine learning. In Proc. the 12th USENIX Symposium on Operating Systems Design and Implementation, Nov. 2016, pp.265–283.
Kim J, Kim K, Kim J J. Unifying activation- and timing-based learning rules for spiking neural networks. In Proc. the 34th International Conference on Neural Information Processing Systems, Dec. 2020, Article No. 1639.
Lobov S, Mironov V, Kastalskiy I, Kazantsev V. A spiking neural network in sEMG feature extraction. Sensors, 2015, 15(11): 27894–27904. https://doi.org/10.3390/s151127894.
Chancán M, Hernandez-Nunez L, Narendra A, Barron A B, Milford M. A hybrid compact neural architecture for visual place recognition. IEEE Robotics and Automation Letters, 2020, 5(2): 993–1000. https://doi.org/10.1109/LRA.2020.2967324.
Lee C, Kosta A K, Zhu A Z, Chaney K, Daniilidis K, Roy K. Spike-FlowNet: Event-based optical flow estimation with energy-efficient hybrid neural networks. arXiv: 2003.06696, 2020. https://arxiv.org/abs/2003.06696, Jan. 2024.
Zhao R, Yang Z Y, Zheng H, Wu Y J, Liu F Q, Wu Z Z, Li L K, Chen F, Song S, Zhu J, Zhang W L, Huang H Y, Xu M K, Sheng K F, Yin Q B, Pei J, Li G Q, Zhang Y H, Zhao M G, Shi L P. A framework for the general design and computation of hybrid neural networks. Nature Communications, 2022, 13(1): 3427. https://doi.org/10.1038/s41467-022-30964-7.
Roxin A, Brunel N, Hansel D, Mongillo G, Vreeswijk C V. On the distribution of firing rates in networks of cortical neurons. Journal of Neuroscience, 2011, 31(5): 16217–16226. https://doi.org/10.1523/JNEUROSCI.1677-11.2011.
Qu P, Lin H, Pang M, Liu X F, Zheng W M, Zhang Y H. ENLARGE: An efficient SNN simulation framework on GPU clusters. IEEE Trans. Parallel and Distributed Systems, 2023, 34(9): 2529–2540. https://doi.org/10.1109/TPDS.2023.3291825.
Fang W, Chen Y Q, Ding J H, Yu Z F, Masquelier T, Chen D, Huang L W, Zhou H H, Li G Q, Tian Y H. SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence. Science Advances, 2023, 9(40): eadi1480. https://doi.org/10.1126/sciadv.adi1480.
Hines M L, Carnevale N T. The NEURON simulation environment. Neural Computation, 1997, 9(6): 1179–1209. https://doi.org/10.1162/neco.1997.9.6.1179.
Turing A M. On computable numbers, with an application to the entscheidungsproblem. Journal of Mathematics, 1936, 58: 345–363. https://doi.org/10.112/plms/s2-42.1.230.
Aimone J B, Severa W, Vineyard C M. Composing neural algorithms with Fugu. In Proc. the International Conference on Neuromorphic Systems, Jul. 2019, Article No. 3. https://doi.org/10.1145/3354265.3354268.
Zhang Y H, Qu P, Ji Y, Zhang W H, Gao G R, Wang G R, Song S, Li G Q, Chen W G, Zheng W M, Chen F, Pei J, Zhao R, Zhao M G, Shi L P. A system hierarchy for brain-inspired computing. Nature, 2020, 586(7829): 378–384. https://doi.org/10.1038/s41586-020-2782-y.
Lattner C. LLVM: An infrastructure for multi-stage optimization [Master’s Thesis]. University of Illinois at Urbana-Champaign, Champaign-Urbana, 2002.
Lattner C, Amini M, Bondhugula U, Cohen A, Davis A, Pienaar J, Riddle R, Shpeisman T, Vasilache N, Zinenko O. MLIR: Scaling compiler infrastructure for domain specific computation. In Proc. the 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Feb. 2021, pp.2–14. https://doi.org/10.1109/CGO51591.2021.9370308.
Ji Y, Zhang Y Y, Xie X F, Li S C, Wang P Q, Hu X, Zhang Y H, Xie Y. FPSA: A full system stack solution for reconfigurable ReRAM-based NN accelerator architecture. In Proc. the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, Apr. 2019, pp.733–747. https://doi.org/10.1145/3297858.3304048.
Ji Y, Liu Z X, Zhang Y H. A reduced architecture for ReRAM-based neural network accelerator and its software stack. IEEE Trans. Computers, 2021, 70(3): 316–331. https://doi.org/10.1109/TC.2020.2988248.
Liu F Q, Zhao R. Enhancing spiking neural networks with hybrid top-down attention. Frontiers in Neuroscience, 2022, 16: 949142. https://doi.org/10.3389/fnins.2022.949142.
Zheng H, Lin H, Zhao R, Shi L P. Dance of SNN and ANN: Solving binding problem by combining spike timing and reconstructive attention. In Proc. the 36th International Conference on Neural Information Processing Systems, Nov. 28–Dec. 9, 2022, pp.31430–31443.
Tian L, Wu Z Z, Wu S, Shi L P. Hybrid neural state machine for neural network. Science China Information Sciences, 2021, 64(3): 132202. https://doi.org/10.1007/s11432-019-2988-1.
Zou Z, Wu Y J, Zhao R. HNST: Hybrid neural state tracker for high speed tracking. In Proc. the 7th International Conference on Control, Automation and Robotics (ICCAR), Apr. 2021, pp.231–235. https://doi.org/10.1109/ICCAR52225.2021.9463460.
Eshraghian J K, Ward M, Neftci E, Wang X X, Lenz G, Dwivedi G, Bennamoun M, Jeong D S, Lu W D. Training spiking neural networks using lessons from deep learning. arXiv: 2109.12894, 2021. https://arxiv.org/abs/2109.12894, Jan. 2024.
Wu Y J, Deng L, Li G Q, Zhu J, Shi L P. Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 2018, 12: 331. https://doi.org/10.3389/fnins.2018.00331.
Grossberg S. Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 1987, 11(1): 23–63. https://doi.org/10.1016/S0364-0213(87)80025-3.
Gewaltig M O, Diesmann M. NEST (neural simulation tool). Scholarpedia, 2007, 2(4): 1430. https://doi.org/10.4249/scholarpedia.1430.
Pang M, Li Y C, Li Z L, Zhang Y H. FABLE: A development and computing framework for brain-inspired learning algorithms. In Proc. the 2023 International Joint Conference on Neural Networks (IJCNN), Jun. 2023. https://doi.org/10.1109/IJCNN54540.2023.10192026.
Shi H, Wang Q, Chu X W. Efficient sparse-dense matrixmatrix multiplication on GPUs using the customized sparse storage format. In Proc. the 26th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Dec. 2020, pp.19–26. https://doi.org/10.1109/ICPADS51040.2020.00013.
Pellauer M, Shao Y S, Clemons J, Crago N, Hegde K, Venkatesan R, Keckler S W, Fletcher C W, Emer J. Buffets: An efficient and composable storage idiom for explicit decoupled data orchestration. In Proc. the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, Apr. 2019, pp.137–151. https://doi.org/10.1145/3297858.3304025.
Oltra-Oltra J A, Madrenas J, Zapata M, Vallejo B, Mata-Hernandez D, Sato S. Hardware-software co-design for efficient and scalable real-time emulation of SNNs on the edge. In Proc. the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), May 2021. https://doi.org/10.1109/ISCAS51556.2021.9401615.
Shi L P, Pei J, Deng N, Wang D, Deng L, Wang Y, Zhang Y H, Chen F, Zhao M G, Song S, Zeng F, Li G Q, Li H L, Ma C. Development of a neuromorphic computing system. In Proc. the 2015 IEEE International Electron Devices Meeting (IEDM), Dec. 2015, pp.4.3.1–4.3.4. https://doi.org/10.1109/IEDM.2015.7409624.
Ma S C, Pei J, Zhang W H, Wang G R, Feng D H, Yu F W, Song C H, Qu H Y, Ma C, Lu M S, Liu F Q, Zhou W H, Wu Y J, Lin Y H, Li H Y, Wang T Y, Song J R, Liu X, Li G Q, Zhao R, Shi L P. Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots. Science Robotics, 2022, 7(67): eabk2948. https://doi.org/10.1126/scirobotics.abk2948.
Zhang B, Shi L P, Song S. Creating more intelligent robots through brain-inspired computing. Science Robotics, 2016, 354(6318): 1445.
Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R, Modha D S. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345(6197): 668–673. https://doi.org/10.1126/science.1254642.
Pehle C, Billaudelle S, Cramer B, Kaiser J, Schreiber K, Stradmann Y, Weis J, Leibfried A, Müller E, Schemmel J. The BrainScaleS-2 accelerated neuromorphic system with hybrid plasticity. Frontiers in Neuroscience, 2022, 16: 795876. https://doi.org/10.3389/fnins.2022.795876.
Li H Y, Ma S C, Wang T Y, Zhang W H, Wang G R, Song C H, Qu H Y, Lin J F, Ma C, Pei J, Zhao R. HASP: Hierarchical asynchronous parallelism for multi-NN tasks. IEEE Trans. Computers, 2024, 73(2): 366–379. https://doi.org/10.1109/TC.2023.3329937.
Modha D S, Akopyan F, Andreopoulos A, Appuswamy R, Arthur J V, Cassidy A S, Datta P, DeBole M V, Esser S K, Otero C O, Sawada J, Taba B, Amir A, Bablani D, Carlson P J, Flickner M D, Gandhasri R, Garreau G J, Ito M, Klamo J L, Kusnitz J A, Mcclatchey N J, Mckinstry J L, Nakamura Y, Nayak T K, Risk W P, Schleupen K, Shaw B, Sivagnaname J, Smith D F, Terrizzano I, Ueda T. Neural inference at the frontier of energy, space, and time. Science, 2023, 382(6668): 329–335. https://doi.org/10.1126/science.adh1174.
Lin J F, Qu H Y, Ma S C, Ji X L, Li H Y, Li X C, Song C H, Zhang W H. SongC: A compiler for hybrid near-memory and in-memory many-core architecture. IEEE Trans. Computers. https://doi.org/10.1109/TC.2023.3311948.
Yu F W, Wu Y J, Ma S C, Xu M K, Li H Y, Qu H Y, Song C H, Wang T Y, Zhao R, Shi L P. Brain-inspired multimodal hybrid neural network for robot place recognition. Science Robotics, 2023, 8(78): eabm6996. https://doi.org/10.1126/scirobotics.abm6996.
Author information
Authors and Affiliations
Corresponding author
Additional information
Peng Qu, Xing-Long Ji, Jia-Jie Chen, Meng Pang, Yu-Chen Li and Xiao-Yi Liu are Co-First Author (Peng Qu wrote the methodological implications from the field of general purpose computing, Xing-Long Ji wrote the content about the framework for HNNs and the Tianjic chip, Jia-Jie Chen wrote the content of instruction set and microarchitecture, Meng Pang wrote the section of the framework for learning algorithms, Yu-Chen Li wrote the section of compilation infrastructure, and Xiao-Yi Liu wrote the current state of research in this field. The above several have made equal contributions to the paper.)
Supplementary Information
ESM 1
(PDF 181 kb)
Rights and permissions
About this article
Cite this article
Qu, P., Ji, XL., Chen, JJ. et al. Research on General-Purpose Brain-Inspired Computing Systems. J. Comput. Sci. Technol. 39, 4–21 (2024). https://doi.org/10.1007/s11390-023-4002-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-023-4002-3