Abstract
Coreness is an important index to reflect the cohesiveness of a graph. The problems of core computation in static graphs and core update in dynamic graphs, known as the core decomposition and core maintenance problems respectively, have been extensively studied in previous work. However, most of these work focus on unweighted graphs. Considering that graphs are weighted in a lot of realistic applications, it is indispensable to extend the coreness to weighted graphs and devise efficient algorithms for weighted core decomposition and weighted core maintenance. In this work, we present a new definition of weighted coreness for vertices in a weighted graph, by taking into account the weights of vertices, which makes the coreness in unweighted graph be a special case. We propose efficient algorithms for both weighted core decomposition and weighted core maintenance problems. The coreness of vertices can be computed in linear time by the proposed decomposition algorithm, while the proposed core maintenance algorithm can process multiple-edge insertions/deletions simultaneously, which greatly reduces the core update time. Comprehensive experiments on both realistic networks and temporal graphs exhibit our algorithms are efficient and scalable.
Similar content being viewed by others
References
Al-Garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Physica A Statistical Mechanics and Its Applications, S0378437116308068 (2016)
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2006)
Aridhi, S., Brugnara, M., Montresor, A., Velegrakis, Y.: Distributed k-core decomposition and maintenance in large dynamic graphs. In: Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, pp. 161–168. ACM (2016)
Batagelj, V., Mrvar, A., Zaveršnik, M.: Partitioning approach to visualization of large graphs. In: International Symposium on Graph Drawing, pp. 90–97. Springer (1999)
Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks. arXiv:cs/0310049 (2003)
Cheng, J., Ke, Y., Chu, S., Özsu, M. T.: Efficient core decomposition in massive networks. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K. (eds.) Proceedings of the 27th International Conference on Data Engineering, ICDE, pp. 51–62. IEEE Computer Society (2011)
Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report 16, 3–1 (2008)
Dasari, N.S., Desh, R., Zubair, M.: Park: An efficient algorithm for k-core decomposition on multicore processors. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 9–16. IEEE (2014)
Eidsaa, M., Almaas, E.: S-core network decomposition: A generalization of k-core analysis to weighted networks. Phys. Rev. E 88(6), 062,819 (2013)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486 (3–5), 75–174 (2010)
Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. J. Phys. 14(8), 083,030 (2012)
Hua, Q., Shi, Y., Yu, D., Jin, H., Yu, J., Cai, Z., Cheng, X., Chen, H.: Faster parallel core maintenance algorithms in dynamic graphs. IEEE Trans. Parallel Distrib. Syst. 31(6), 1287–1300 (2020)
Huang, C., Fu, Y., Sun, C.: Identify influential social network spreaders. In: 2014 IEEE International Conference on Data Mining Workshops, ICDM workshop, pp. 562–568. IEEE Computer Society (2014)
Jin, H., Wang, N., Yu, D., Hua, Q.S., Shi, X., Xie, X.: Core maintenance in dynamic graphs: A parallel approach based on matching. IEEE Trans. Parallel Distrib. Syst. 29(11), 2416–2428 (2018)
Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single pc. Proceed. Vldb Endow. 9(1), 13–23 (2015)
Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)
Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, p. 49 (2016) (2014)
Li, R., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. Proc. VLDB Endow. 8(5), 509–520 (2015)
Li, R.H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. IEEE Trans. Knowl. Data Eng. 26(10), 2453–2465 (2013)
Liu, B., Zhang, F.: Incremental algorithms of the core maintenance problem on edge-weighted graphs. IEEE Access 8, 63,872–63,884 (2020)
Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2012)
Samudrala, R., Moult, J.: A graph-theoretic algorithm for comparative modeling of protein structure. J. Molec. Biol. 279(1), 287–302 (1998)
Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Incremental k-core decomposition: algorithms and evaluation. VLDB J.—Int. J. Very Large Data Bases 25(3), 425–447 (2016)
Wang, N., Yu, D., Jin, H., Qian, C., Xie, X., Hua, Q.S.: Parallel algorithm for core maintenance in dynamic graphs. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2366–2371. IEEE (2017)
Wei, B., Liu, J., Wei, D., Gao, C., Deng, Y.: Weighted k-shell decomposition for complex networks based on potential edge weights. Physica A: Statist. Mech. Appl. 420, 277–283 (2015)
Wu, X., Wei, W., Tang, L., Lu, J., Lü, J.: Coreness and h-index for weighted networks. IEEE Transactions on Circuits and Systems I: Regular Papers (2019)
Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53(2), 352–369 (2010)
Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: 33rd IEEE International Conference on Data Engineering, pp. 337–348. IEEE Computer Society (2017)
Acknowledgements
The work is supported by National Natural Science Foundation of China (No. 61802140, 61972447).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, W., Huang, H., Hua, QS. et al. Core decomposition and maintenance in weighted graph. World Wide Web 24, 541–561 (2021). https://doi.org/10.1007/s11280-020-00857-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-020-00857-0