Abstract
Recent advances in Monte Carlo methods allow us to revisit work by de Finetti who suggested the use of approximate exchangeability in the analyses of contingency tables. This paper gives examples of computational implementations using Metropolis Hastings, Langevin, and Hamiltonian Monte Carlo to compute posterior distributions for test statistics relevant for testing independence, reversible or three-way models for discrete exponential families using polynomial priors and Gröbner bases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agresti, A., Min, Y.: Frequentist performance of Bayesian confidence intervals for comparing proportions in 2\(\times \) 2 contingency tables. Biometrics 61(2), 515–523 (2005)
Ajdacic-Gross, V., Knöpfli, D., Landolt, K., Gostynski, M., Engelter, S.T., Lyrer, P.A., Gutzwiller, F., Rössler, W.: Death has a preference for birthdays—an analysis of death time series. Ann. Epidemiol. 22(8), 603–606 (2012)
Andrews, D.F., Herzberg, A.M.: Data. Springer, New York (1985)
Betancourt, M.: A general metric for Riemannian manifold Hamiltonian Monte Carlo. In: Geometric Science of Information, pp. 327–334. Springer, New York (2013)
Darroch, J.N., Lauritzen, S.L., Speed, T.P.: Markov fields and log-linear interaction models for contingency tables. Ann. Stat 8, 522–539 (1980)
Diaconis, P., Efron, B.: Testing for independence in a two-way table: New interpretations of the chi-square statistic. Ann. Stat 13(3), 845–874 (1985)
Diaconis, P., Freedman, D.: On the uniform consistency of Bayes estimates for multinomial probabilities. Ann. Stat 18(3), 1317–1327 (1990)
Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann Stat 26(1), 363–397 (1998)
Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics. Springer, Basel (2009)
de Finetti, B.: Sur la condition d’équivalence partielle (1938)
de Finetti, B.: Probability, induction and statistics: The art of guessing. Wiley, New York (1972)
de Finetti, B.: On the condition of partial exchangeability. Stud. Inductive Log. Probab. 2, 193–205 (1980)
Ghosh, J., Sinha, B., Joshi, S.: Expansions for posterior probability and integrated Bayes risk. Stat. Decis. Theory Relat. Top. III 1, 403–456 (1982)
Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R Stat. Soc. 73(2), 123–214 (2011)
Good, I.J.: The Estimation of Probabilities: An Essay on Modern Bayesian Methods, vol. 258. MIT press Cambridge, Cambridge (1965)
Goodman, L.A.: The multivariate analysis of qualitative data: Interactions among multiple classifications. J. Am. Stat. Assoc. 65(329), 226–256 (1970)
Haberman, S.J.: Analysis of Qualitative Data. vol. 1: IntroductoryTtopics. Academic Press, New York (1978)
Howard, J.: The 2\(\times \) 2 table: A discussion from a Bayesian viewpoint. Stat. Sci. 13, 351–367 (1998)
Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
Pearson, E.S.: The choice of statistical tests illustrated on the interpretation of data classed in a 2\(\times \) 2 table. Biometrika 34, 139–167 (1947)
Phillips, D.P.: Deathday and birthday - unexpected connection. In: Statistics: a guide to the unknown, pp. 71–85. Holden-Day Series in Probability and Statistics (1978)
Rosen, M.J., Callahan, B.J., Fisher, D.S., Holmes, S.P.: Denoising pcr-amplified metagenome data. BMC Bioinform. 13(1), 283 (2012)
Acknowledgments
We thank Ben Callahan for discussions about the DNA denoising example. This work was partially funded by Grant NSF-DMS-1162538 to SH, Grant NSF-DMS-1208775 to PD and a CIMI fellowship that funded the travel of all three authors to Toulouse in 2014.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bacallado, S., Diaconis, P. & Holmes, S. de Finetti Priors using Markov chain Monte Carlo computations. Stat Comput 25, 797–808 (2015). https://doi.org/10.1007/s11222-015-9562-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-015-9562-9