Abstract
Allometric scaling can reflect underlying mechanisms, dynamics and structures in complex systems; examples include typical scaling laws in biology, ecology and urban development. In this work, we study allometric scaling in scientific fields. By performing an analysis of the outputs/inputs of various scientific fields, including the numbers of publications, citations, and references, with respect to the number of authors, we find that in all fields that we have studied thus far, including physics, mathematics and economics, there are allometric scaling laws relating the outputs/inputs and the sizes of scientific fields. Furthermore, the exponents of the scaling relations have remained quite stable over the years. We also find that the deviations of individual subfields from the overall scaling laws are good indicators for ranking subfields independently of their sizes.
Similar content being viewed by others
References
Batty, M. (1999). The size, scale, and shape of cities. Science, 319, 769–771. doi:10.1126/science.1151419.
Bettencourt, L. M. A., & West, G. B. (2010). A unified theory of urban living. Nature, 467, 912–913. doi:10.1038/467912a.
Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C., & West, G. B. (2007a). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America, 104, 7301–7306. doi:10.1073/pnas.0610172104.
Bettencourt, L. M. A., Lobo, J., & Strumsky, D. (2007b). Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size. Research Policy, 36, 107–120. doi:10.1016/j.respol.2006.09.026.
Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chavez, C., & Wojick, D. E. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518. doi:10.1007/s11192-007-1888-4.
Bettencourt, L. M. A., Lobo, J., Strumsky, D., & West, G. B. (2010). Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across citie. PLoS One, 5, e13,541. doi:10.1371/journal.pone.0013541.
Brown, J. H. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. doi:10.1890/03-9000.
Brown, J. H., & West, G. B. (2000). Scaling in biology. Oxford: Oxford University Press.
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703. doi:10.1137/070710111.
Gao, X., & Guan, J. (2009). A scale-independent analysis of the performance of the chinese innovation system. Journal of Informetrics, 3, 321–331. doi:10.1016/j.joi.2009.04.004.
Herrera, M., Roberts, D. C., & Gulbahce, N. (2010). Mapping the evolution of scientific fields. PLoS One, 5, e10,355. doi:10.1371/journal.pone.0010355.
Katz, J. S. (1999). The self-similar science system. Research Policy, 28, 501–517. doi:10.1016/S0048-7333(99)00010-4.
Katz, J. S. (2000). Scale-independent indicators and research evaluation. Science Public Policy, 27, 23–36. doi:10.3152/147154300781782156.
Katz, J. S. (2006). Indicators for complex innovation systems. Research Policy, 35, 893–909. doi:10.1016/j.respol.2006.03.007.
Katz, J. S. (2016). What is a complex innovation system? PLOS One, 11(6), e0156,150. doi:10.1371/journal.pone.0156150.
Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–353.
Kuhnert, C., Helbing, D., & West, G. B. (2006). Scaling laws in urban supply networks. Physica A, 363, 96–103. doi:10.1016/j.physa.2006.01.058.
Lammer, S., Gehlsena, B., & Helbing, B. (2006). Scaling laws in the spatial structure of urban road networks. Physica A, 363, 89–95. doi:10.1016/j.physa.2006.01.051.
Lee, Y. (1989). An allometric analysis of the us urban system: 1960–80. Environment and Planning A, 21, 463–476. doi:10.1068/a210463.
Levine, D. K. (2016). What is game theory? http://www.dklevine.com/general/whatis.htm. Accessed 20 Dec 2016.
Milojević, S. (2010). Power law distributions in information science: Making the case for logarithmic binning. Journal of the American Society for Information Science and Technology, 61(12), 2417–2425. doi:10.1002/asi.21426.
Milojević, S. (2013). Accuracy of simple, initials-based methods for author name disambiguation. Journal of Informetrics, 7, 767–773. doi:10.1016/j.joi.2013.06.006.
Naroll, R., & von Bertalanffy, L. (1956). The principle of allometry in biology and the social sciences. General Systems Yearbook, 1, 76–89.
Nicholls, P. T. (1987). Estimation of zipf parameters. Journal of the American Society for Information Science and Technology, 38(6), 443–445. doi:10.1002/(SICI)1097-4571(198711)38:6<443::AID-ASI4>3.0.CO;2-E.
Nomaler, O., Frenken, K., & Heimeriks, G. (2014). On scaling of scientific knowledge production in US metropolitan areas. PLoS One, 9(10), e110,805. doi:10.1371/journal.pone.0110805.
Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O., & Bettencourt, L. M. A. (2015). Settlement scaling and increasing returns in an ancient society. Science Advances, 1, e1400,066. doi:10.1126/sciadv.1400066.
Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 4, 131–134. doi:10.1007/s100510050359.
Van Raan, A. F. J. (2006a). Statistical properties of bibliometric indicators: Research group indicator distributions and correlations. Journal of the American Society for Information Science and Technology, 57, 408–430. doi:10.1002/asi.20284.
Van Raan, A. F. J. (2006b). Performance-related differences of bibliometric statistical properties of research groups: Cumulative advantages and hierarchically layered networks. Journal of the American Society for Information Science and Technology, 57, 1919–1935. doi:10.1002/asi.20389.
Van Raan, A. F. J. (2008a). Bibliometric statistical properties of the 100 largest european research universities: Prevalent scaling rules in the science system. Journal of the American Society for Information Science and Technology, 59, 461–475. doi:10.1002/asi.20761.
Van Raan, A. F. J. (2008b). Scaling rules in the science system: Influence of fieldspecific citation characteristics on the impact of research groups. Journal of the American Society for Information Science and Technology, 59, 565–576. doi:10.1002/asi.20765.
Van Raan, A. F. J. (2013). Universities scale like cities. PLoS One, 8, e59,384. doi:10.1371/journal.pone.0059384.
West, G. B., & Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. The Journal of Experimental Biology, 208, 1575–1592. doi:10.1242/jeb.01589.
West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284, 1677–1679. doi:10.1126/science.284.5420.1677.
Zhang, J., & Yu, T. (2010). Allometric scaling of countries. Physica A, 389, 4887–4896. doi:10.1016/j.physa.2010.06.059.
Acknowledgements
This work was supported by NSFC Grant 61374175, also partially by the Fundamental Research Funds for the Central Universities and Beijing Academy of Science and Technology Under Project Agreement OTP-2014-002. The authors thank the APS Physical Review for sharing the data.
Author information
Authors and Affiliations
Corresponding author
Additional information
H. Dong and M. Li contribute equally.
Rights and permissions
About this article
Cite this article
Dong, H., Li, M., Liu, R. et al. Allometric scaling in scientific fields. Scientometrics 112, 583–594 (2017). https://doi.org/10.1007/s11192-017-2333-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-017-2333-y