Abstract
This contribution provides an analysis of progress in the field of quantum lithography. We review the conceptual foundations of this idea and the status of research aimed at implementing this idea in the laboratory. The selection of a highly sensitive recording material that functions by means of multiphoton absorption seems crucial to the success of the proposal of quantum lithography. This review thus devotes considerable attention to these materials considerations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boto N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)
Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)
Fonseca E.J.S., Monken C.H., Pádua S.: Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999)
Edamatsu K., Shimizu R., Itoh T.: Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)
Angelo M.D., Chekhova M.V., Shih Y.: Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)
Dowling J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)
Agarwal G.S., Boyd R.W., Nagasako E.M., Bentley S.J.: Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’. Phys. Rev. Lett. 86, 1389 (2001)
Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Nonclassical two-photon interferometry and lithography with high-gain optical parametric amplifiers. Phys. Rev. A 64, 043802 (2001)
Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Parametric downconversion vs. optical parametric amplification: a comparison of their quantum statistics. J. Mod. Opt. 49, 529–537 (2002)
Agarwal G.S., Chan K.W., Boyd R.W., Cable H., Dowling J.P.: Quantum states of light produced by a high-gain optical parametric amplifier for use in quantum lithography. J. Opt. Soc. Am. B 24, 270 (2007)
Glasser R.T., Cable H., Dowling J.P., De Martini F., Sciarrino F., Vitelli C.: Entanglement-seeded, dual, optical parametric amplification: applications to quantum imaging and metrology. Phys. Rev. A 78, 012339 (2008)
Cable H., Vyas R., Singh S., Dowling J.P.: An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography. New J. Phys. 11, 113055 (2009)
Sciarrino F., Vitelli C., De Martini F., Glasser R., Cable H., Dowling J.P.: Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography. Phys. Rev. A 77, 012324 (2008)
Gea-Banacloche J.: Two-photon absorption of nonclassical light. Phys. Rev. Lett. 62, 1603 (1989)
Javanainen J., Gould P.L.: Linear intensity dependence of a two-photon transition rate. Phys. Rev. A 41, 5088 (1990)
Georgiades N.Ph., Polzik E.S., Edamatsu K., Kimble H.J.: Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426 (1995)
Steuernagel O.: On the concentration behaviour of entangled photons. J. Opt. B: Quantum Semiclassical Opt. 6, S606 (2004)
Tsang M.: Relationship between resolution enhancement and multiphoton absorption ratein quantum lithography. Phys. Rev. A 75, 043813 (2007)
Tsang M.: Fundamental quantum limit to the multiphoton absorption rate for monochromatic light. Phys. Rev. Lett. 101, 033602 (2008)
Kothe, C., Bjork, G., Inoue, S., Bourennane, M.: arxiv quant-phy 1106.2250v1
Peeters W.H., Renema J.J., van Exter M.P.: Engineering of two-photon spatial quantum correlations behind a double slit. Phys. Rev. A 79, 043817 (2009)
Plick W.N., Wildfeuer C.F., Anisimov P.N., Dowling J.P.: Optimizing the multiphoton absorption properties of maximally path-entangled number states. Phys. Rev. A 80, 063825 (2009)
Tsang M.: Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009)
Hemmer R.P., Muthukrishnan A., Scully M.O., Zubairy M.S.: Quantum lithography with classical light. Phys. Rev. Lett. 96, 163603 (2006)
Kok P., Boto A.N., Abrams D.S., Williams C.P., Braunstein S.L., Dowling J.P.: Quantum interferometric optical lithography: towards arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001)
Bjork G., Sanchez-Soto L.L., Soderholm J.: Entangled-state lithography: tailoring any pattern with a single state. Phys. Rev. Lett. 86, 4516–4519 (2001)
Davis C.C., Atia W.A., Gungor A., Mazzoni D.L., Pilevar S., Smolyaninov I.I.: Scanning near-field optical microscopy and lithography with bare tapered optical fibers. Laser Phys. 7, 243–256 (1997)
Strekalov D.V., Stowe M.C., Chekhova M.V. et al.: Two-photon processes in faint biphoton fields. J. Mod. Opt. 49, 2349–2364 (2002)
Dayan B., Pe’er A., Friesem A.A. et al.: Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)
Sensarn S., Ali-Khan I., Yin G.Y. et al.: Resonant sum frequency generation with time-energy entangled photons. Phys. Rev. Lett. 102, 053602 (2009)
Bentley S.J., Boyd R.W.: Nonlinear optical lithography with ultra-high sub-Rayleigh resolution. Opt. Express 12, 5735 (2004)
Boyd R.W., Bentley S.J.: Recent progress in quantum and nonlinear optical lithography. J. Mod. Opt. 53, 713 (2006)
Chang H.J., Shin H., O’Sullivan-Hale M.N., Boyd R.W.: Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber. J. Mod. Opt. 53, 2271 (2006)
See, for example, the data sheets for Type-D material of STX Aprilis, Inc. www.stxaprilis.com
Maruo S., Nakamura O., Kawata S.: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132 (1997)
Kawata S., Sun H.-B., Tanaka T., Takada K.: Finer features for functional microdevices. Nature 412, 697 (2001)
von Freymann G., Ledermann A., Thiel M., Staude I., Essig S., Busch K., Wegener M.: Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010)
Data sheets for SU-8 are available from one of its commercial suppliers. Microchem, at www.microchem.com
Schaffer D.B., Brodeurm A., Garcia J.F., Mazur E.: Micromachinging bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)
Shimotsuma Y., Kazansky P.G., Qiu J., Hirao K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)
Rajeev P.P., Gertsvolf M., Simova E., Hnatovsky C., Taylor R.S., Bhardwaj V.R., Rayner D.M., Corkum P.B.: Memory in nonlinear ionization of transparent solids. Phys. Rev. Lett. 97, 253001 (2006)
Rajeev P.P., Gertsvolf M., Corkum P.B., Rayner D.M.: Field dependent avalanche ionization rates in dielectrics. Phys. Rev. Lett. 102, 083001 (2009)
Park S.H., Lim T.W., Yang D.-Y., Cho N.C., Lee K.-S.: Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl. Phys. Lett. 89, 173133 (2006)
Farsari M., Ovsianikov A., Vamvakaki M., Sakellari I., Gray D., Chichkov B.N., Fotakis C.: Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl. Phys. A 93, 11–15 (2008)
He G.S., Tan L-S., Zheng Q., Prasad P.N.: Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245–1330 (2008)
Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W., Webb W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2008)
Cohanoschi I., Hernández F.E.: Surface plasmon enhancement of two- and three-photon absorption of hoechst 33 258 dye in activated gold colloid solution. J. Phys. Chem. B 2005(109), 14506–14512 (2005)
Cohanoschi I., Yao S., Belfield K.D., Hernández F.E.: Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles. J. Appl. Phys. 101, 086112 (2007)
Dolgaleva K., Shin H., Boyd R.W.: Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility. Phys. Rev. Lett. 103, 113902 (2007)
Lee D.-I., Goodson T. III.: Entangled photon absorption in an organic porphyrin dendrimer. J. Phys. Chem. B Lett. 110, 25582–25585 (2006)
Harpham M.R., Suzer O., Ma C.-Q., Bauerle P., Goodson T. III.: Thiophene dendrimers as entangled photon sensor materials. J. Am. Chem. Soc. 131, 973–979 (2009)
Fei H.-B., Jost B.M., Popescu S., Saleh B.E.A., Teich M.C.: Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boyd, R.W., Dowling, J.P. Quantum lithography: status of the field. Quantum Inf Process 11, 891–901 (2012). https://doi.org/10.1007/s11128-011-0253-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0253-y