Abstract
The total least squares (TLS) method is a well-known technique for solving an overdetermined linear system of equations Ax ≈ b, that is appropriate when both the coefficient matrix A and the right-hand side vector b are contaminated by some noise. For ill-posed TLS poblems, regularization techniques are necessary to stabilize the computed solution; otherwise, TLS produces a noise-dominant output. In this paper, we show that the regularized total least squares (RTLS) problem can be reformulated as a nonlinear least squares problem and can be solved by the Gauss–Newton method. Due to the nature of the RTLS problem, we present an appropriate method to choose a good regularization parameter and also a good initial guess. Finally, the efficiency of the proposed method is examined by some test problems.
Similar content being viewed by others
Notes
Global convergence means convergence to a local minimum from any initial point [22].
References
Adcock, R. J.: Note on the method of least squares. Analyst 4 (6), 183–184 (1877)
Beck, A., Ben-Tal, A.: On the solution of the Tikhonov regularization of the total least squares problem. SIAM J. Optim. 17(1), 98–118 (2006)
Beck, A., Ben-Tal, A., Teboulle, M.: Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 28(2), 425–445 (2006)
Björck, Å.: Numerical methods for least squares problems. SIAM (1996)
Björck, Å., Heggernes, P.x, Matstoms, P.: Methods for large scale total least squares problems. SIAM J. Matrix Anal. Appl. 22(2), 413–429 (2000)
Buccini, A., Park, Y., Reichel, L.: Comparison of a-posteriori parameter choice rules for linear discrete ill-posed problems. J. Comput. Appl. Math. 373, 112138 (2020)
Calvetti, D., Golub, G. H., Reichel, L.: Estimation of the L-curve via lanczos bidiagonalization. BIT Numer. Math. 39(4), 603–619 (1999)
Calvetti, D., Reichel, L., Shuibi, A.: L-Curve and curvature bounds for Tikhonov regularization. Numer. Algorithm. 35(2), 301–314 (2004)
Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 5. Springer (2007)
Cortiella, A., Park, K. -C., Doostan, A.: Sparse identification of nonlinear dynamical systems via reweighted ℓ1-regularized least squares. Comput. Methods Appl. Mech. Eng. 376, 113620 (2021)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley (2001)
Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer Science & Business Media (2005)
Engl, H. W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media (2000)
Fasino, D., Fazzi, A.: A Gauss–Newton iteration for total least squares problems. BIT Numer. Math., 1–19 (2018)
Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT Numer. Math. 57(4), 1019–1039 (2017)
Fierro, R. D., Golub, G. H., Hansen, P. C., O’Leary, D. P.: Regularization by truncated total least squares. SIAM J. Sci. Comput. 18(4), 1223–1241 (1997)
Gander, W., Golub, G. H., von Matt, U.: A constrained eigenvalue problem. Linear Algebra Appl. 114, 815–839 (1989)
Golub, G. H., Hansen, P. C., O’Leary, D. P.: TIkhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)
Golub, G. H., Van Loan, C. F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)
Golub, G. H., Van Loan, C. F.: Matrix Computations. Johns Hopkins University Press, Baltimore (2013)
Guo, H., Renaut, R. A.: A regularized total least squares algorithm. In Total Least Squares and Errors-in-Variables Modeling, pp. 57–66. Springer (2002)
Hansen, P., Pereyra, V., Scherer, G.: Least squares data fitting with applications. Johns Hopkins University Press (2013)
Hansen, P. C.: Rank-deficient and Discrete Ill-posed Problems: Numerical aspects of linear inversion. SIAM (1998)
Hansen, P. C.: Regularization tools version 4.0 for matlab 7.3. Numer. Algorithm. 46(2), 189–194 (2007)
Hansen, P. C., O’Leary, D. P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)
Lampe, J., Voss, H.: On a quadratic eigenproblem occurring in regularized total least squares. Comput. Stat. Data Anal. 52(2), 1090–1102 (2007)
Lampe, J., Voss, H.: A fast algorithm for solving regularized total least squares problems. Electron. Trans. Numer Anal. 31, 12–24 (2008)
Lampe, J., Voss, H.: Solving regularized total least squares problems based on eigenproblems. Taiwan. J. Math. 14(3A), 885–909 (2010)
Lampe, J., Voss, H.: Efficient determination of the hyperparameter in regularized total least squares problems. Appl. Numer. Math. 62(9), 1229–1241 (2012)
Lampe, J., Voss, H.: Large-scale Tikhonov regularization of total least squares. J. Comput. Appl. Math. 238, 95–108 (2013)
Lawson, C. L., Hanson, R. J.: Solving Least Squares Problems, vol. 15. SIAM (1995)
Lee, G., Barlow, J. L.: Two projection methods for regularized total least squares approximation. Linear Algebra Appl. 461, 18–41 (2014)
Lee, G., Fu, H., Barlow, J. L.: Fast high-resolution image reconstruction using Tikhonov regularization based total least squares. SIAM J. Sci. Comput. 35(1), B275–B290 (2013)
Levin, E., Meltzer, A. Y.: Estimation of the regularization parameter in linear discrete ill-posed problems using the Picard parameter. SIAM J. Sci. Comput. 39(6), A2741–A2762 (2017)
Markovsky, I.: Bibliography on total least squares and related methods. Stat. Interface 3(3), 329–334 (2010)
Markovsky, I., Van Huffel, S.: Overview of total least-squares methods. Signal Process. 87(10), 2283–2302 (2007)
Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science & Business Media (2012)
Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Media (2006)
Park, Y., Reichel, L., Rodriguez, G., Yu, X.: Parameter determination for Tikhonov regularization problems in general form. J. Comput. Appl. Math. 343, 12–25 (2018)
Reddy, G.: The parameter choice rules for weighted Tikhonov regularization scheme. Comput. Appl. Math. 37(2), 2039–2052 (2018)
Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithm. 63(1), 65–87 (2013)
Reichel, L., Sadok, H.: A new L-curve for ill-posed problems. J. Comput. Appl. Math. 219(2), 493–508 (2008)
Renaut, R. A., Guo, H.: Efficient algorithms for solution of regularized total least squares. SIAM J. Matrix Anal. Appl. 26(2), 457–476 (2005)
Renaut, R. A., Horst, M., Wang, Y., Cochran, D., Hansen, J.: Efficient estimation of regularization parameters via downsampling and the singular value expansion. BIT Numer. Math. 57(2), 499–529 (2017)
Sima, D. M., Van Huffel, S., Golub, G. H.: Regularized total least squares based on quadratic eigenvalue problem solvers. BIT Numer. Math. 44 (4), 793–812 (2004)
Snyman, J. A.: Practical mathematical optimization. Springer (2005)
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis, vol. 9. SIAM (1991)
Wang, F., Zhao, X. -L., Ng, M. K.: Multiplicative noise and blur removal by framelet decomposition and l1-based L-curve method. IEEE Trans. Image Process. 25(9), 4222–4232 (2016)
Yang, M., Xia, Y., Wang, J., Peng, J.: Efficiently solving total least squares with Tikhonov identical regularization. Comput. Optim. Appl. 70(2), 571–592 (2018)
Zare, H., Hajarian, M.: Determination of regularization parameter via solving a multi-objective optimization problem. Appl. Numer. Math. 156, 542–554 (2020)
Acknowledgements
The authors would like to express their heartfelt thanks to the editor and anonymous referees for their useful comments and constructive suggestions which substantially improved the quality and presentation of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zare, H., Hajarian, M. An efficient Gauss–Newton algorithm for solving regularized total least squares problems. Numer Algor 89, 1049–1073 (2022). https://doi.org/10.1007/s11075-021-01145-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01145-2