[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A tangential method for the balanced truncation in model reduction

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach for large-scale Lyapunov matrix equations, where we present two algorithms named: Adaptive Block Tangential Lanczos-type and Arnoldi-type algorithms (ABTL and ABTA). This approach is based on the projection of the initial problem onto tangential Krylov subspaces to produce a low-rank approximate solution of large Lyapunov equations. These approximations are used in model reduction of large-scale dynamical systems with multiple inputs and multiple outputs (MIMO). We give some algebraic properties and present some numerical experiences to show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. SIAM Adv. Des. Contr. 29, 181–190 (2005)

    MATH  Google Scholar 

  2. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MathSciNet  Google Scholar 

  3. Benner, P., Li, J., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bentbib, A.H., Jbilou, K., Kaouane, Y.: A computational global tangential Krylov subspace method for model reduction of large-scale MIMO dynamical systems. J. Sci. Comput. 75, 1614–1632 (2018)

    Article  MathSciNet  Google Scholar 

  5. Datta, B.N.: Large-scale matrix computations in control. Appl. Numer. Math. 30, 53–63 (1999)

    Article  MathSciNet  Google Scholar 

  6. Datta, B.N.: Krylov subspace methods for large-scale matrix problems in control. Future Gener. Comput. Syst. 19, 1253–1263 (2003)

    Article  Google Scholar 

  7. Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)

    Article  MathSciNet  Google Scholar 

  8. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Contr. Lett. 60, 546–560 (2011)

    Article  MathSciNet  Google Scholar 

  9. Frangos, M., Jaimoukha, I.M.: Adaptive rational interpolation: Arnoldi and Lanczos-like equations. Eur. J. Control. 14, 342–354 (2008)

    Article  MathSciNet  Google Scholar 

  10. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L, \(\infty \)-error bounds. Int. J. Control. 39, 1115–1193 (1984)

    Article  MathSciNet  Google Scholar 

  11. Glover, K., Limebeer, D.J.N., Doyle, J.C., Kasenally, E.M., Safonov, M.G.: A characterization of all solutions to the four block general distance problem. SIAM J. Control Optim. 29, 283–324 (1991)

    Article  MathSciNet  Google Scholar 

  12. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory University of Illinois at Urbana–Champaign (1997)

  13. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control. 77, 748–766 (2004)

    Article  MathSciNet  Google Scholar 

  14. Heyouni, M., Jbilou, K.: Matrix Krylov subspace methods for large scale model reduction problems. App. Math. Comput. 181, 1215–1228 (2006)

    Article  MathSciNet  Google Scholar 

  15. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Matrix Anal. Appl. 31, 227–251 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Automatic Contr. 26, 17–32 (1981)

    Article  MathSciNet  Google Scholar 

  17. Mullis, C.T., Roberts, R.A.: Roundoff noise in digital filters: frequency transformations and invariants. IEEE Trans. Acoust. Speec Signal Process. 24, 538–550 (1976)

    Article  MathSciNet  Google Scholar 

  18. Penzl, T.: Lyapack matlab toolbox for large Lyapunov and Riccati equations, model reduction problems and linear-quadratic optimal control problems, http://www.tuchemintz.de/sfb393/lyapack

  19. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Automat. Contr. 34, 729–733 (1989)

    Article  MathSciNet  Google Scholar 

  20. Van Dooren, P., Gallivan, K.A., Absil, P.: H2-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kaouane.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaouane, Y. A tangential method for the balanced truncation in model reduction. Numer Algor 83, 629–652 (2020). https://doi.org/10.1007/s11075-019-00696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00696-9

Keywords

Navigation