[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cropping-resilient 3D mesh watermarking based on consistent segmentation and mesh steganalysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new approach to 3D mesh watermarking using consistent segmentation and mesh steganalysis. The method is blind, statistical, and highly robust to cropping attack. The primary watermarking domain is calculated by shape diameter function and the outliers of segments are eliminated by computing the consistency interval of vertex norms. In the watermark embedding process, the mesh is divided into several segments and the same watermark is inserted in each segment. In the watermark extraction process, the final watermark among watermark candidates extracted from multiple segments is determined through watermark trace analysis that is kind of mesh steganalysis. We analyze the watermark trace energy of multiple segments of a mesh and detect the final watermark in the segment with the highest watermark trace energy. To analyze the watermark trace energy, we employ nonlinear least-squares fitting. The experimental results show that the proposed method not only achieves significantly high robustness against cropping attack, but also resists common signal processing attacks such as additive noise, quantization, smoothing and simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abu-Marie W, Gutub A, Abu-Mansour H (2010) Image based steganography using truth table based and determinate Array on RGB indicator. International Journal of Signal and Image Processing (IJSIP) 1(3):196–204

    Google Scholar 

  2. Alface PR, Macq B, Cayre F (2007) Blind and robust watermarking of 3D models: How to withstand the cropping attack? IEEE International Conference on Image Processing pp 465–468

  3. Awad AI, Hassanien AE, Baba K (2013) A blind robust 3D–watermarking scheme based on progressive mesh and self organization maps. In: Communications in Computer and Information Science, vol 381. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  4. Bilmes JA (1998) A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. ReCALL 4(510):126

    Google Scholar 

  5. Bors AG, Luo M (2013) Optimized 3D watermarking for minimal surface distortion. IEEE Trans Image Process: a publication of the IEEE Signal Processing Society 22(5):1822–1835

    Article  Google Scholar 

  6. Chen HK, Chen WS (2016) GPU-accelerated blind and robust 3D mesh watermarking by geometry image. Multimedia Tools and Applications 75(16):10077–10096

  7. Cho JW, Prost R, Jung HY (2007) An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans Signal Process 55(1):142–155

    Article  MathSciNet  Google Scholar 

  8. Cignoni P, Rocchini C (1998) Metro: measuring error on simpli ed surfaces. Comput Graph 17(2):167–174

    Google Scholar 

  9. Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6(2):418–445

  10. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. SIGGRAPH pp 209–216

  11. Gutub A (2010) Pixel indicator technique for RGB image steganography. Journal of Emerging Technologies in Web Intelligence (JETWI) 2(1):56–64

    Google Scholar 

  12. Gutub A, Al-Qahtani A, Tabakh A (2009) Triple-a: secure RGB image steganography based on randomization. AICCSA-2009 - The 7th ACS/IEEE International Conference on Computer Systems and Applications 1(3):400–403

    Google Scholar 

  13. Kanai S, Date H, Kishinami T (1998) Digital watermarking for 3D polygons using multiresolution wavelet decomposition. Proc Sixth IFIP WG 5:296–307

    Google Scholar 

  14. Konstantinides J, Mademlis A, Daras P, Mitkas P, Strintzis M (2009) Blind robust 3-D mesh watermarking based on oblate spheroidal harmonics. IEEE Trans Multimedia 11(1):23–38

    Article  Google Scholar 

  15. Lavoué G (2009) A local roughness measure for 3D meshes and its application to visual masking. ACM Transactions on Applied Perception 5(4):1–23

    Article  Google Scholar 

  16. Lavoué G, Drelie Gelasca E, Dupont F, Baskurt A, Ebrahimi T (2006) Perceptually driven 3D distance metrics with application to watermarking. Proceedings SPIE 6312, Applications of Digital Image Processing XXIX, 63120L (August 24, 2006). doi:10.1117/12.686964

  17. Li Z, Bors AG (2016) 3D mesh steganalysis using local shape features. In: 2016 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 2144–2148

  18. Liu Y, Prabhakaran B, Guo X (2008) A robust spectral approach for blind watermarking of manifold surfaces. Proceedings of the 10th ACM workshop on Multimedia and security - MM&Sec ‘08 p 43

  19. Liu Y, Prabhakaran B, Guo X (2012) Spectral watermarking for parameterized surfaces. IEEE Trans Inf Forensics Secur 7(5):1459–1471

    Article  Google Scholar 

  20. Luo M, Bors AG (2011) Surface-preserving robust watermarking of 3-D shapes. IEEE Trans Image Process: a publication of the IEEE Signal Processing Society 20(10):2813–2826

    Article  MathSciNet  MATH  Google Scholar 

  21. Marvel LM, Boncelet CG, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Process 8(8):1075–1083

    Article  Google Scholar 

  22. Mun SM, Jang HU, Kim DG, Choi SH, Lee HK (2015) A robust 3D mesh watermarking scheme against cropping. In: International Conference on 3D Imaging, pp 1–6

  23. Ohbuchi R, Takahashi S, Miyazawa T, Mukaiyama A (2001) Watermarking 3D polygonal meshes in the mesh spectral domain. Graphics Interface pp 9–17

  24. Ohbuchi R, Mukaiyama A, Takahashi S (2002) A frequency-domain approach to watermarking 3D shapes. Comput Graphics Forum 21(3):373–382

    Article  Google Scholar 

  25. Parvez MT, Gutub A (2008) RGB intensity based variable-bits image steganography. APSCC 2008 - Proceedings of 3rd IEEE Asia-Pacific Services Computing Conference 1(3):196–204

    Google Scholar 

  26. Praun E, Hoppe H, Finkelstein A (1999) Robust mesh watermarking. SIGGRAPH pp 49–56

  27. Rolland-nevizère X, Doërr G, Member S, Alliez P (2014) Triangle surface mesh watermarking based on a constrained optimization framework. IEEE Trans Inf Forensics Secur 9(9):1491–1501

    Article  Google Scholar 

  28. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27(6):1539–1556

    Article  MATH  Google Scholar 

  29. Shapira L, Shamir A, Cohen-Or D (2008) Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis Comput 24(4):249–259

    Article  Google Scholar 

  30. Taubin G (1995) A Signal Processing Approach To Fair Surface Design. SIGGRAPH pp 351–358

  31. Thingiverse (2016). Retrieved July 26, 2016, from https://www.thingiverse.com

  32. Wang K, Lavoué G, Denis F, Baskurt A (2008) A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans Multimedia 10(8):1513–1527

    Article  Google Scholar 

  33. Wang K, Lavoué G, Denis F, Baskurt A (2010) A benchmark for 3D mesh watermarking. Shape Modeling International Conference (SMI) 2010:231–235

    Google Scholar 

  34. Wang K, Lavoué G, Denis F, Baskurt A (2011) Robust and blind mesh watermarking based on volume moments. Comput Graph 35(1):1–19

    Article  Google Scholar 

  35. Wu J, Kobbelt L (2005) Efficient spectral watermarking of large meshes with orthogonal basis functions. Vis Comput 21(8–10):848–857

    Article  Google Scholar 

  36. Yang Y, Pintus R, Rushmeier H, Ivrissimtzis I (2014) A steganalytic algorithm for 3D polygonal meshes. In: 2014 I.E. International Conference on Image Processing (ICIP), IEEE, pp 4782–4786

  37. Yang Y, Pintus R, Rushmeier H, Ivrissimtzis I (2016) A 3D steganalytic algorithm and steganalysis-resistant watermarking. IEEE Trans Vis Comput Graph 23(2):1002–1013

  38. Yin K, Pan Z, Shi J, Zhang D (2001) Robust mesh watermarking based on multiresolution processing. Comput Graph 25(3):409–420

    Article  Google Scholar 

  39. Yu Z, Ip HH, Kwok L (2003) A robust watermarking scheme for 3D triangular mesh models. Pattern Recogn 36(11):2603–2614

    Article  Google Scholar 

  40. Zabih R, Kolmogorov V (2004) Spatially coherent clustering using graph cuts. Proceedings of the 2004 I.E. Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. CVPR, pp 437–444

  41. Zafeiriou S, Tefas A, Pitas I (2005) Blind robust watermarking schemes for copyright protection of 3D mesh objects. IEEE Trans Vis Comput Graph 11(5):596–607

  42. Zaid AO, Hachani M, Puech W (2015) Wavelet-based high-capacity watermarking of 3-D irregular meshes. Multimedia Tools and Applications 74(15):5897–5915

  43. Zhan YZ, Li YT, Wang XY, Qian Y (2014) A blind watermarking algorithm for 3D mesh models based on vertex curvature. Journal of Zhejiang University SCIENCE C 15(5):351–362

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by Ministry of Culture, Sports and Tourism (MCST) and from Korea Copyright Commission in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Kyu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, HU., Choi, HY., Son, J. et al. Cropping-resilient 3D mesh watermarking based on consistent segmentation and mesh steganalysis. Multimed Tools Appl 77, 5685–5712 (2018). https://doi.org/10.1007/s11042-017-4483-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4483-6

Keywords

Navigation