[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A binary monkey search algorithm variation for solving the set covering problem

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In complexity theory, there is a widely studied grouping of optimization problems that belongs to the non-deterministic polynomial-time hard set. One of them is the set covering problem, known as one of Karp’s 21 \({\mathscr {NP}}\)-complete problems, and it consists of finding a subset of decision variables for satisfying a set of constraints at the minimum feasible cost. However, due to the nature of the problem, this cannot be solved using traditional complete algorithms for hard instances. In this work, we present an improved binary version of the monkey search algorithm for solving the set covering problem. Originally, this approximate method was naturally inspired by the cognitive behavior of monkeys for climbing mountains. We propose a new climbing process with a better exploratory capability and a new cooperation procedure to reduce the number of unfeasible solutions. For testing this approach, we present a detailed computational results section, where we illustrate how this variation of the monkey search algorithm is capable of reaching various global optimums for a well-known instance set from the Beasley’s OR-Library and how it outperforms many other heuristics and meta-heuristics addressed in the literature. Moreover, we add a complete statistical analysis to show the effectiveness of the proposed approach with respect to the original version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Affenzeller M, Wagner S, Winkler S (2007) Self-adaptive population size adjustment for genetic algorithms. Computer aided systems theory EUROCAST 2007. Springer, Berlin, pp 820–828

    Google Scholar 

  • Akay B, Karaboga D (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120

    Google Scholar 

  • Balas E (1997) A dynamic subgradient-based branch-and-bound procedure for set covering. Locat Sci 5(3):203

    Google Scholar 

  • Basset MA, Zhou Y (2018) An elite opposition-flower pollination algorithm for a 0–1 knapsack problem. Int J Bio Inspir Comput 11(1):46. https://doi.org/10.1504/ijbic.2018.090080

    Article  Google Scholar 

  • Beasley J (2018) Or-library. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html. Accessed 14 Feb 2018

  • Beasley J (1987) An algorithm for set covering problem. Eur J Oper Res 31(1):85

    MathSciNet  MATH  Google Scholar 

  • Bilal N, Galinier P, Guibault F (2014) An iterated-tabu-search heuristic for a variant of the partial set covering problem. J Heuristics 20(2):143

    Google Scholar 

  • Brotcorne L, Laporte G, Semet F (2003) Ambulance location and relocation models. Eur J Oper Res 147(3):451

    MathSciNet  MATH  Google Scholar 

  • Brusco M, Jacobs L, Thompson G (1999) A morphing procedure to supplement a simulated annealing heuristic for cost and coverage correlated set covering problems. Ann Oper Res 86:611

    MathSciNet  MATH  Google Scholar 

  • Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Handbook of metaheuristics, vol 57. International series in operations research and management science. Springer, Berlin, pp 457–474

    Google Scholar 

  • Calvet L, de Armas J, Masip D, Juan AA (2017) Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math 15(1):261–80

    MathSciNet  MATH  Google Scholar 

  • Caprara A, Fischetti M, Toth P (1999) A heuristic method for the set covering problem. Oper Res 47(5):730

    MathSciNet  MATH  Google Scholar 

  • Caprara A, Fischetti M, Toth P (2000) Algorithms for the set covering problem. Annals OR 98(1–4):353

    MathSciNet  MATH  Google Scholar 

  • Ceria S, Nobili P, Sassano A (1998) A lagrangian-based heuristic for large-scale set covering problems. Math Program 81:215

    MathSciNet  MATH  Google Scholar 

  • Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233

    MathSciNet  MATH  Google Scholar 

  • Crawford B, Soto R, Monfroy E, Paredes F, Palma W (2011) A hybrid ant algorithm for the set covering problem. Int J Phys Sci 6(19):4667

    Google Scholar 

  • Crawford B, Soto R, Olivares-Suárez M, Paredes F (2014a) Advances in intelligent systems and computing. 3rd Computer science on-line conference 2014 (CSOC 2014), vol 285. Springer, Berlin, pp 65–73

  • Crawford B, Soto R, Palma W, Johnson F, Paredes F, Olguín E (2014b) Advances in swarm intelligence. Lecture notes in computer science, vol 8794. Springer, Berlin, pp 189–196

  • Crawford B, Soto R, Astorga G, García J, Castro C, Paredes F (2017) Putting continuous metaheuristics to work in binary search spaces. Complexity 2017:1

    MathSciNet  MATH  Google Scholar 

  • Crawford B, Soto R, Berríos N, Johnson F, Paredes F, Castro C, Norero E (2015a) A binary cat swarm optimization algorithm for the non-unicost set covering problem. Math Prob Eng 2015:1

    MathSciNet  MATH  Google Scholar 

  • Crawford B, Soto R, Peña C, Palma W, Johnson F, Paredes F (2015b) Intelligent information and database systems. In: 7th Asian conference, ACIIDS 2015, Bali, Indonesia, March 23–25, 2015, Proceedings, Part II. Lecture notes in computer science, vol 9012. Springer, Berlin, pp 41–50

  • Cui L, Li G, Zhu Z, Wen Z, Lu N, Lu J (2017) A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution. Soft Comput. https://doi.org/10.1007/s00500-017-2685-5

    Article  Google Scholar 

  • Day RH (1965) Letter to the editor-on optimal extracting from a multiple file data storage system: an application of integer programming. Oper Res 13(3):482

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26(1):1

    Google Scholar 

  • Eaton JW (2018) Gnu octave. https://www.gnu.org/software/octave/ (2002). Accessed 14 Feb 2018

  • Eiben A, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124

    Google Scholar 

  • Feo TA, Resende MG (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8(2):67

    MathSciNet  MATH  Google Scholar 

  • Fink M (2007) Proceedings of the Eleventh international conference on artificial intelligence and statistics, proceedings of machine learning research (PMLR, San Juan, Puerto Rico, 2007), vol 2, pp 115–122

  • Fisher ML, Kedia P (1990) Optimal solution of set covering/partitioning problems using dual heuristics. Manage Sci 36(6):674

    MathSciNet  MATH  Google Scholar 

  • Han MF, Liao SH, Chang JY, Lin CT (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell 39(1):41. https://doi.org/10.1007/s10489-012-0393-5

    Article  Google Scholar 

  • Hartmanis J (1982) Computers and intractability: a guide to the theory of NP-completeness. SIAM Rev 24(1):90

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Housos E, Elmroth T (1997) Automatic optimization of subproblems in scheduling airline crews. Interfaces 27(5):68

    Google Scholar 

  • Iba H (2018) Evolutionary approach to machine learning and deep neural networks. Springer, Singapore, pp 27–75. https://doi.org/10.1007/978-981-13-0200-8_2

  • Ituarte-Villarreal CM, Lopez N, Espiritu JF (2012) Using the monkey algorithm for hybrid power systems optimization. Proc Comput Sci 12:344

    Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459

    MathSciNet  MATH  Google Scholar 

  • Lan G, DePuy G (2006) On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput Ind Eng 51(3):362

    Google Scholar 

  • Lanza-Gutierrez J, Crawford B, Soto R, Berrios N, Gomez-Pulido J, Paredes F (2017) Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst Appl 70:67

    Google Scholar 

  • Li X, Yin M (2012) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723

    Google Scholar 

  • Li X, Yin M (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298:80

    Google Scholar 

  • Liang KH, Yao X, Newton CS (2001) Adapting self-adaptive parameters in evolutionary algorithms. Appl Intell 15(3):171. https://doi.org/10.1023/a:1011286929823

    Article  MATH  Google Scholar 

  • Lilliefors H (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399

    Google Scholar 

  • Mahmoudi S, Lotfi S (2015) Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl Soft Comput 33:48

    Google Scholar 

  • Mann H, Donald W (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50

    MathSciNet  MATH  Google Scholar 

  • Memeti S, Pllana S, Binotto A, Kołodziej J, Brandic I (2018) Proceedings of the international conference on learning and optimization algorithms: theory and applications - LOPAL 18. ACM Press. doi 10(1145/3230905):3230906

    Google Scholar 

  • Nguyen TT, Vo DN (2015) Modified cuckoo search algorithm for short-term hydrothermal scheduling. Int J Electr Power Energy Syst 65:271

    Google Scholar 

  • Olamaei J, Moradi M, Kaboodi T (2013) 18th Electric power distribution conference, pp 1–6

  • Qin A, Suganthan P (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: 2005 IEEE congress on evolutionary computation (IEEE, 2005), pp 1785–1791. https://doi.org/10.1109/cec.2005.1554904

  • ReVelle C, Toregas C, Falkson L (2010) Applications of the location set covering problem. Geogr Anal 8(1):65

    Google Scholar 

  • Roeper T, Williams E (1987) Parameter setting. In: Hyams N (ed) The theory of parameters and syntactic development. Springer, Netherlands, pp 191–215

    Google Scholar 

  • Salto C, Alba E (2011) Designing heterogeneous distributed GAs by efficiently self-adapting the migration period. Appl Intell 36(4):800. https://doi.org/10.1007/s10489-011-0297-9

    Article  Google Scholar 

  • Salveson ME (1995) The assembly line balancing problem. J Ind Eng 6(3):18

    Google Scholar 

  • Soto R, Crawford B, Misra S, Palma W, Monfroy E, Castro C, Paredes F (2013) Choice functions for autonomous search in constraint programming: GA vs PSO. Tech Gaz 20(4):621

    Google Scholar 

  • Soto R, Crawford B, Palma W, Monfroy E, Olivares C, Castro Rodrigoand, Paredes F (2015a) Top- k based adaptive enumeration in constraint programming. Math Prob Eng 2015:1

    Google Scholar 

  • Soto R, Crawford B, Palma W, Galleguillos K, Castro C, Monfroy E, Johnson F, Paredes F (2015b) Boosting autonomous search for CSPs via skylines. Inf Sci 308:38

    Google Scholar 

  • Soto R, Crawford B, Muñoz A, Johnson F, Paredes F (2015c) Advances in intelligent systems and computing. Artificial Intelligence Perspectives and Applications, vol 347. Springer, Berlin, pp 89–97

  • Soto R, Crawford B, Olivares R, Barraza J, Figueroa I, Johnson F, Paredes F, Olguín E (2017) Solving the non-unicost set covering problem by using cuckoo search and black hole optimization. Nat Comput 16(2):213

    MathSciNet  MATH  Google Scholar 

  • Spall J (1992) Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Autom Control 37(3):332

    MathSciNet  MATH  Google Scholar 

  • Stutzle T, Lopez-Ibanez M, Pellegrini P, Maur M, Montes de Oca M, Birattari M, Dorigo M (2012) What is autonomous search?. Parameter adaptation in ant colony optimization. Springer, Berlin, pp 191–215

    Google Scholar 

  • Valenzuela C, Crawford B, Soto R, Monfroy E, Paredes F (2014) A 2-level metaheuristic for the set covering problem. Int J Comput Commun Control 7(2):377

    Google Scholar 

  • Vasko FJ, Wilson GR (1984) Using a facility location algorithm to solve large set covering problems. Oper Res Lett 3(2):85

    MATH  Google Scholar 

  • Vasko FJ, Wolf FE, Stott KL (1987) Optimal selection of ingot sizes via set covering. Oper Res 35(3):346

    Google Scholar 

  • Xin C, Zhou Y, Zhonghua T, Qifang L (2017) A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems. Appl Soft Comput 58:104. https://doi.org/10.1016/j.asoc.2017.04.057

    Article  Google Scholar 

  • Yang XS (2010) Nature Inspired Cooperative Strategies for optimization (NICSO), vol 284. Studies in computational intelligence. Springer, Berlin, pp 65–74

    Google Scholar 

  • Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36. https://doi.org/10.1504/ijsi.2013.055801

    Article  Google Scholar 

  • Yelbay B, Birbil Şİ, Bülbül K (2014) The set covering problem revisited: an empirical study of the value of dual information. JIMO 11(2):575

    MathSciNet  MATH  Google Scholar 

  • Yi W, Gao L, Li X, Zhou Y (2014) A new differential evolution algorithm with a hybrid mutation operator and self-adapting control parameters for global optimization problems. Appl Intell 42(4):642. https://doi.org/10.1007/s10489-014-0620-3

    Article  Google Scholar 

  • Zhang S, Zhou Y, Li Z, Pan W (2016) Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv Eng Softw 99:121. https://doi.org/10.1016/j.advengsoft.2016.05.015

    Article  Google Scholar 

  • Zhao R, Tang W (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):165

    Google Scholar 

  • Zhou Y (2016) Hybrid symbiotic organisms search algorithm for solving 0–1 knapsack problem. Int J Bio Inspir Comput 1(1):1. https://doi.org/10.1504/ijbic.2016.10004304

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Chen H, Zhou G (2014) Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing 137:285. https://doi.org/10.1016/j.neucom.2013.05.063

    Article  Google Scholar 

  • Zhou Y, Luo Q, Chen H, He A, Wu J (2015a) A discrete invasive weed optimization algorithm for solving traveling salesman problem. Neurocomputing 151:1227. https://doi.org/10.1016/j.neucom.2014.01.078

    Article  Google Scholar 

  • Zhou Y, Li L, Ma M (2015b) A complex-valued encoding bat algorithm for solving 0–1 knapsack problem. Neural Process Lett 44(2):407. https://doi.org/10.1007/s11063-015-9465-y

    Article  Google Scholar 

  • Zhou Y, Bao Z, Luo Q, Zhang S (2016a) A complex-valued encoding wind driven optimization for the 0–1 knapsack problem. Appl Intell 46(3):684. https://doi.org/10.1007/s10489-016-0855-2

    Article  Google Scholar 

  • Zhou Y, Chen X, Zhou G (2016b) An improved monkey algorithm for a 0–1 knapsack problem. Appl Soft Comput 38:817

    Google Scholar 

Download references

Acknowledgements

Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243. Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1190129. Rodrigo Olivares is supported by CONICYT/FONDEF/IDeA/ID16I10449, STIC-AMSUD/17STIC- 03, FONDECYT/MEC/MEC80170097 and Postgraduate Grant Pontificia Universidad Católica de Valparaíso (INF-PUCV 2015-2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Broderick Crawford, Ricardo Soto or Rodrigo Olivares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, B., Soto, R., Olivares, R. et al. A binary monkey search algorithm variation for solving the set covering problem. Nat Comput 19, 825–841 (2020). https://doi.org/10.1007/s11047-019-09752-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09752-8

Keywords

Navigation