[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Greedy Block Coordinate Descent under Restricted Isometry Property

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Exact support recovery of K-group sparse matrices X from the multiple measurement vectors (MMV) model Y = A X arises from many applications and has been extensively studied. In this paper, we investigate the restricted isometry property (RIP) based condition that guarantees exact support recovery of K-group sparse matrices X from the MMV model with greedy block coordinate descent (GBCD) algorithm in K iterations. We show that if A satisfies the RIP with \(\delta _{K+1}<1/\sqrt {K+1}\), then GBCD recovers the support of any K-group sparse matrix X in K iterations. This RIP condition is sharp since GBCD may fail to recover the support of a K-group sparse matrix in K iterations if \(\delta _{K+1}\geq 1/\sqrt {K+1}\). As far as we know, this is the first sharp condition for GBCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candés EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  2. Davenport M, Wakin M (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55(5):2230–2249

    Article  MathSciNet  Google Scholar 

  3. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho DL, Huo X (2001) Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory 47(7):2845–2862

    Article  MathSciNet  MATH  Google Scholar 

  5. Li H, Fu Y, Hu R, Rong R (2014) Perturbation analysis of greedy block coordinate descent under RIP. IEEE Signal Process Lett 21(5):518–522

    Article  Google Scholar 

  6. Li H, Ma Y, Liu W, Fu Y (2015) Improved analysis of greedy block coordinate descent under RIP. Electron Lett 51(6):488–490

    Article  Google Scholar 

  7. Majumdar A, Ward RK (2012) Face recognition from video: an MMV recovery approach. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), 2012. IEEE, pp 2221–2224

  8. Mo Q (2015) A sharp restricted isometry constant bound of orthogonal matching pursuit. arXiv:1501.01708

  9. Obozinski G, Taskar B, Jordan MI (2010) Joint covariate selection and joint subspace selection for multiple classification problems. Stat Comput 20(2):231–252

    Article  MathSciNet  Google Scholar 

  10. Qin Z, Scheinberg K, Goldfarb D (2013) Efficient block-coordinate descent algorithms for the group lasso. Math Program Comput 5(2):143–169

    Article  MathSciNet  MATH  Google Scholar 

  11. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang J (2015) Support recovery with orthogonal matching pursuit in the presence of noise. IEEE Trans Signal Process 63(21):5868–5877

    Article  MathSciNet  Google Scholar 

  13. Wang J, Kwon S, Shim B (2012) Generalized orthogonal matching pursuit. IEEE Trans Signal Process 60(12):6202–6216

    Article  MathSciNet  Google Scholar 

  14. Wang J, Shim B (2012) On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Trans Signal Process 60(9):4973–4976

    Article  MathSciNet  Google Scholar 

  15. Wei X, Yuan Y, Ling Q (2012) DOA estimation using a greedy block coordinate descent algorithm. IEEE Trans Signal Process 60(12):6382–6394

    Article  MathSciNet  Google Scholar 

  16. Wen J, Li D, Zhu F (2015) Stable recovery of sparse signals via l p -minimization. Appl Comput Harmon Anal 38(1):161–176

    Article  MathSciNet  MATH  Google Scholar 

  17. Wen J, Zhou Z, Wang J, Tang X, Mo Q (2015) Sharp conditions for exact support recovery of sparse signals with noise via OMP, to appear in IEEE Trans Signal Process

  18. Wen J, Zhu X, Li D (2013) Improved bounds on the restricted isometry constant for orthogonal matching pursuit. Electron Lett 49:1487–1489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Tang, J. & Zhu, F. Greedy Block Coordinate Descent under Restricted Isometry Property. Mobile Netw Appl 22, 371–376 (2017). https://doi.org/10.1007/s11036-016-0774-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0774-9

Keywords

Navigation