[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Family of Ideal Values for Cooperative Games

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In view of the nature of pursuing profit, a selfish coefficient function is employed to describe the degrees of selfishness of players in different coalitions, which is the desired rate of return to the worth of coalitions. This function brings in the concept of individual expected reward to every player. Built on different selfish coefficient functions, the family of ideal values can be obtained by minimizing deviations from the individual expected rewards. Then, we show the relationships between the family of ideal values and two other classical families of values: the procedural values and the least square values. For any selfish coefficient function, the corresponding ideal value is characterized by efficiency, linearity, an equal-expectation player property and a nullifying player punishment property, and also interpreted by a dynamic process. As two dual cases in the family of ideal values, the center of gravity of imputation set value and the equal allocation of nonseparable costs value are raised from new axiomatic angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Shapley value allocates the dividends of every coalition equally over the players in the coalition, and since the sum of the dividends over all coalitions equals the worth of the grand coalition, the Shapley value is efficient.

References

  1. Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, Annals of Mathematics Studies, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  2. Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)

    Google Scholar 

  3. Deegan, J., Packel, E.W.: A new index of power for simple \(n\)-person games. Int. J. Game Theory 7, 113–123 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, W., Sun, H., Xu, G., Hou, D.: Procedural interpretation and associated consistency for the egalitarian Shapley values. Oper. Res. Lett. 45, 164–169 (2017)

    Article  MathSciNet  Google Scholar 

  5. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17, 1163–1170 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sobolev, A.I.: The characterization of optimality principles in cooperative games by functional equations. Math. Methods Soc. Sci. 6, 151–153 (1975)

    Google Scholar 

  7. Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: The least square prenucleolus and the least square nucleolus. Two values for TU games based on the excess vector. Int. J. Game Theory 25, 113–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: The family of least square values for transferable utility games. Games Econ. Behav. 24, 109–130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: Some new results on least square values for TU games. Top 6(1), 139–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nguyen, T.D.: The fairest core in cooperative games with transferable utilities. Oper. Res. Lett. 43, 34–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Driessen, T.S.H.: Associated consistency and values for TU games. Int. J. Game Theory 30, 467–482 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malawski, M.: Procedural values for cooperative games. Int. J. Game Theory 42, 305–324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang, Y., Li, J., Hsiao, Y.: A dynamic approach to the Shapley value based on associated games. Int. J. Game Theory 33, 551–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang, Y., Liao, Y.: Alternative formulation and dynamic process for the efficient Banzhaf–Owen index. Oper. Res. Lett. 45, 60–62 (2017)

    Article  MathSciNet  Google Scholar 

  15. Driessen, T.S.H., Funaki, F.: Coincidence of and collinearity between game theoretic solutions. OR Spektrum 13, 15C30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moulin, H.: The separability axiom and equal sharing method. J. Econ. Theory 36, 120–148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. van den Brink, R., Funaki, Y.: Axiomatizations of a class of equal surplus sharing solutions for TU-games. Theory Decis. 67, 303–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamiache, G.: Associated consistency and Shapley value. Int. J. Game Theory 30, 279–289 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hwang, Y.: Associated consistency and equal allocation of nonseparable costs. Econ. Theory 28, 709–719 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hwang, Y., Wang, B.: A matrix approach to the associated consistency with respect to the equal allocation of non-separable costs. Oper. Res. Lett. 44, 826–830 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, G., Wang, W., Hou, D.: Axiomatization for the center-of-gravity of imputation set value. Linear Algebra Appl. 439, 2205–2215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, G., van den Brink, R., van der Laan, G., Sun, H.: Associated consistency characterization of two linear values for TU games by matrix approach. Linear Algebra Appl. 471, 224–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, G., Dai, H., Shi, H.: Axiomatizations and a noncooperative interpretation of the \(\alpha \)-CIS value. Asia Pac. J. Oper. Res. 32(05), 1550031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Joosten, R.: Dynamics, equilibria and values. Ph.D. dissertation, Maastricht University (1996)

  25. van den Brink, R., Funaki, Y., Ju, Y.: Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values. Soc. Choice Welf. 40, 693–714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Grant Nos. 71571143 and 71671140), the China Scholarship Council (Grant No. 201706290181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genjiu Xu.

Additional information

Communicated by Irinel Chiril Dragan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Sun, H., van den Brink, R. et al. The Family of Ideal Values for Cooperative Games. J Optim Theory Appl 180, 1065–1086 (2019). https://doi.org/10.1007/s10957-018-1259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1259-8

Keywords

Mathematics Subject Classification

Navigation