Abstract
In the present paper, we prove existence and uniqueness of a mild solution for a stochastic semi-linear equation with Neumann boundary conditions, using only general monotonicity assumptions. The study of this equation is motivated by physical applications as the model of the temperature control through the boundary. The result is proved by using an optimal control approach based on the variational principle of Brezis and Ekeland.
Similar content being viewed by others
References
Pardoux, E.: Equations aux derivees partielles stochastiques nonlineaires monotones. Universite Paris, These (1975)
Krylov, N.V., Rozowskii, B.L.: Stochastic evolution equations. Current problems in mathematics, vol. 14, 71–147 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)
Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 259, 2902–2922 (2010)
Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercitivity conditions. J. Differ. Equ. 254, 725–755 (2013)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)
Prevot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Monograph, Lectures Notes in Mathematics. Springer, Berlin (2006)
Barbu, V., Bonaccorsi, S., Tubaro, L.: A stochastic heat equation with nonlinear dissipation on the boundary. J. Optim. Theory Appl. 165(2), 317–343 (2015)
Brezis, H., Ekeland, I.: Un principe variationnell associ é à certaines équations paraboliques. Le cas indépendent de temps. C.R. Acad. Sci. Paris 282, 971–974 (1976)
Brezis, H., Ekeland, I.: Un principe variationnell associ é à certaines équations paraboliques. Le cas dépendent de temps. C.R. Acad. Sci. Paris 282, 1197–1198 (1976)
Marinoschi, G.: Existence to time-dependent nonlinear diffusion equations via convex optimization. J. Optim. Theory Appl. 154(3), 792–817 (2012)
Marinoschi, G.: A variational approach to nonlinear diffusion equations with time periodic coefficients. Ann. Univ. Buchar. (Mathematical Series) 3(LXI), 173–185 (2012)
Barbu, V.: A variational approach to stochastic nonlinear parabolic problems. J. Math. Anal. Appl. 384, 2–15 (2011)
Barbu, V.: Optimal control approach to nonlinear diffusion equations driven by Wiener noise. J. Optim. Theory Appl. 153, 1–26 (2012)
Ciotir, I.: Existence for the Neumann stochastic semi-linear equations via an optimal control approach (abstract). In: The Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (2014)
Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Reidel Publishing, Dordrecht 1986, New Edition Springer (2010)
Rockafeller, R.T.: Convex Analysis. Princeton University Press, Princeton (1969)
Rockafeller, R.T.: Integrals which are convex functional. Pac. J. Math. 24, 525–539 (1968)
Rockafeller, R.T.: Integrals which are convex functional. II. Pac. J. Math. 29, 439–469 (1971)
Adams, R., Fournier, J.F.: Sobolev Spaces, Elsevier, Pure and Applied Mathematics, vol. 140, Second Edition (2003)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
Lions, J.L., Magenes, E.: Problèmes aux limites non homigènes et applications. Dunod, Gauthier-Villars (1970)
Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Acad Press, Boston (1993)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solution for stochastic porous media equations under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)
Acknowledgments
This work was supported by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (Romania) grant PN-II-RU-PD-2012-3-0240. The author would like to thank Professor Viorel Barbu for helpful comments and the anonymous referee for constructive suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ciotir, I. A Variational Approach to Neumann Stochastic Semi-Linear Equations Modeling the Thermostatic Control. J Optim Theory Appl 167, 1095–1111 (2015). https://doi.org/10.1007/s10957-015-0787-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-015-0787-8
Keywords
- Optimization
- Set-valued maps
- Variational principle of Brezis and Ekeland
- Stochastic PDE’s
- Maximal monotone operators