Abstract
Clustering is a well-known approach to cope with large nodes density and efficiently conserving energy in wireless sensor networks (WSN). Load balancing is an effective approach for optimizing resources like channel bandwidth, the main objective of this paper is to combine these two valuable approaches in order to significantly improve the main WSN service such as information routing. So, our proposal is a routing protocol in which load traffic is shared among cluster members in order to reduce the dropping probability due to queue overflow at some nodes. To this end, a novel hierarchical approach, called Distributed Energy efficient Adaptive Clustering Protocol (DEACP) with data gathering and Load-balancing is proposed. The DEACP approach aims to fulfill the following purposes: decreasing the overall network energy consumption, balancing the energy dissipation among the sensor nodes and as direct consequence: extending the lifetime of the network. In fact, the cluster-heads are optimally determined and suitably distributed over the area of interest allowing the member nodes reaching them with adequate energy dissipation and appropriate load balancing utilization. In addition, nodes radio are turned off for fixed time duration according to sleeping control rules optimizing so their energy consumption. The performance evaluation of the proposed protocol is carried out through the well-known NS2 simulator and the exhibited results are convincing. Like this, the residual energy of sensor nodes was measured every 20 s throughout the duration of simulation, in order to calculate the total number of alive nodes. Based on the simulation results, we concluded that our proposed DEACP protocol increases the profit of energy, and prolongs the network lifetime duration from 32 to 40% compared to DEEAC reference protocol and from 25 to 28% compared to FEMCHRP protocol. The authors also note that the proposed protocol is 41.7% better than DEEAC with respect to fist node die, and 25.5% better than FEMCHRP with respect to last node die while maintaining the average data transmission delay. We found also that DEACP achieved 66.5% and 40.6% more rounds than DEEAC and FEMCHRP respectively.
Similar content being viewed by others
References
Bari, A., Wazed, S., Jaekel, A.: A genetic algorithm based approach for energy efficient routing in two tiered sensor networks. J. Ad-Hoc Netw. 7(4), 65–76 (2009)
Attea, B.A., Khalil, E.A.: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Appl. Soft Comput. 12(7), 1950–1957 (2012)
Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application specific protocol architecture for wireless microsensor networks”. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)
Liu, M., Cao, J., Chen, G., Wang, X.: An energy-aware routing protocol in wireless sensor networks sensors. Sensors 9, 445–462 (2009)
Sajjanhar, U., Mitra, P.: Distributive energy efficient adaptive clustering protocol for wireless sensor networks. In: Proceedings of the 2007 international conference on mobile data management, pp. 326–330
Bajaber, F., Awan, I.: Adaptive decentralized re-clustering protocol for wireless sensor networks. J. Comput. Syst. Sci. 77(2), 282–292 (2011)
Younis, O., Fahmy, S.: HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 3(4), 366–379 (2004)
Smaragdakis, G., Matta, I., Bestavros, A.: SEP: a stable election protocol for clustered heterogeneous wireless sensor networks. Georgios Technical Report BUCS-TR-2004-022
Singh, S.K., Singh, M.P., Singh, D.K.: Energy efficient homogenous clustering algorithm for wireless sensor networks. Int. J. Wirel. Mob. Netw. 2(3), 49–61 (2010)
Ephremides, A., Wieselthier, J.E., Baker, D.J.: A design concept for reliable mobile radio networks with frequency hopping signaling. Proc. IEEE 75(1), 56–73 (2012)
Lindsey, S., Raghavendra, C.: PEGASIS: power efficient gathering in sensor information systems. In: International Conference on Communications, pp. 1125–1130 (2001)
Chatterjee, M., Das, S.K., Turgut, D.: WCA: a weighted clustering algorithm for mobile ad hoc networks. J. Cluster Comput. 5, 193–204 (2002)
Liu, M., Cao, J., Chen, G., Wang, X.: An energy-aware routing protocol in wireless sensor networks. Sensors (Basel) 9(1), 445–462 (2009)
Nurhayati, Choi, S.H., Lee, K.O.: A cluster based energy efficient location routing protocol in wireless sensor networks. Int. J. Comput. Commun. 5(2), 67–74 (2011)
Wang, H., Zhang, X., Nait-Abdesselam, F.: Cross layer optimized MAC to support multi hop QOS routing for wireless sensor network. IEEE Trans. Veh. Technol. 59(5), 2556–2563 (2010)
Keming, D.U., Yang, Y.: A QoS routing for maximum bandwidth in ad hoc networks. In: Second International Conference on Future Networks, pp. 343–345 (2010)
Jasani, H.: Quality of service evaluations of on demand mobile ad hoc routing protocols. In: Proceeding International Conference on, Next Generation Mobile Applications, Services and Technologies, pp. 123–128 (2011)
Athreya, A.P., Tague, P.: Towards secure multi-path routing for wireless mobile ad-hoc networks: a cross-layer strategy. In: 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 146–148 (2011)
Shao, X., Wang, C.-X., Rao, Y.: Network coding aware QoS routing for wireless sensor network. J. Commun. 10(1), 24–32 (2015)
Rana, S., Bahar, A.N., Islam, N., Islam, J.: Fuzzy based energy efficient multiple cluster head selection routing protocol for wireless sensor network. Int. J. Comput. Netw. Inf. Secur. 5, 54–61 (2015)
Sajjanhar, U., Mitra, P.: Distributive energy efficient adaptive clustering protocol for wireless sensor networks. In: Proceedings of the International Conference on Mobile Data Management, pp. 326–330 (2007)
Weng, C.-E., Lai, T.-W.: An energy-efficient routing algorithm based on relative identification and direction for wireless sensor networks. Wireless Pers. Commun. 69(1), 253–268 (2013)
Safia, A.A., Aghbari, Z.A., Kamel, I.: Phenomena detection in mobile wireless sensor networks. J. Netw. Syst. Manag. 24(1), 92–115 (2016)
Gherbi, C., Aliouat, Z., Benmohammed, M.: An adaptive clustering approach to dynamic load balancing and energy efficiency in wireless sensor networks. J. Energy 114, 647–662 (2016)
Palani, U., Alamelumangai, V., Nachiappan, A.: Hybrid routing and load balancing protocol for wireless sensornetwork. Wirel. Netw. 22(8), 2659–2666 (2015)
Cheng, Y., Xie, J.H., Yang, Z.M.: The clustering analysis method of the learning characteristics based on the virtual learning community. Int. J. Inf. Educ. Technol. 7(1), 66–70 (2016)
Darabkh, K.A., Ismail, S.S., Al-Shurman, M., Jafar, I.F., Alkhader, E., Al-Mistarihi, M.F.: Performance evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. J. Netw. Comput. Appl. 35(6), 2068–2080 (2012)
Yu, Y., Song, Y.: An energy-efficient chain-based routing protocol in wireless sensor network. In: 2010 International Conference on Computer Application and System Modeling (ICCASM (2010), pp. 486–489. IEEE
Niu, W., Lei, J., Tong, E., Li, G., Chang, L., Shi, Z., Ci, S.: Context-aware service ranking in wireless sensor networks. J. Netw. Syst. Manag. 22(1), 50–74 (2014)
Kamal, A.R.M., Hamid, M.A.: Supervisory routing control for dynamic load balancing in low data rate wireless sensor networks. Wirel. Netw. 23(4), 1085–1099 (2016)
Kowsalya, P.K., Harikumar, R.: Performance analysis of adaptive routing structure for wireless sensor network based on load balancing. Wireless Pers. Commun. 90(2), 473–485 (2016)
Awad, M., Abuhasan, A.: A smart clustering based approach to dynamic bandwidth allocation in wireless networks. Int. J. Comput. Netw. Commun. 8(1), 73–86 (2016)
Gherbi, C., Zibouda, A., Benmohammed, M.: Distributed energy efficient adaptive clustering protocol with data gathering for large scale wireless sensor networks. In: 12th IEEE International Symposiumon Programming and Systems, pp. 28–30 (2015)
Ahmed, A.M., Paulus, R.: Congestion detection technique for multipath routing and load balancing in WSN. Wirel. Netw. 23(3), 881–888 (2016)
Rajanarayanan, S., SureshgnanaDha, C.: Wireless sensor network based detection of malicious packets drops and cluster performance study using energy with security aware LEACH (ES-LEACH). Sens. Lett. 13(12), 1011–1016 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gherbi, C., Aliouat, Z. & Benmohammed, M. A Novel Load Balancing Scheduling Algorithm for Wireless Sensor Networks. J Netw Syst Manage 27, 430–462 (2019). https://doi.org/10.1007/s10922-018-9473-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10922-018-9473-0