Abstract
We extend the recently introduced explicit divergence-free DG scheme for incompressible hydrodynamics (Fu in Comput Methods Appl Mech Eng 345:502–517, 2019) to the incompressible magnetohydrodynamics. A globally divergence-free finite element space is used for both the velocity and the magnetic field. Highlights of the scheme include global and local conservation properties, high-order accuracy, energy-stability, and pressure-robustness. When forward Euler time stepping is used, we need two symmetric positive definite hybrid-mixed Poisson solvers (one for velocity and one for magnetic field) to advance the solution to the next time level. Since we treat both viscosity in the momentum equation and resistivity in the magnetic induction equation explicitly, the method shall be best suited for inviscid or high-Reynolds number, low resistivity flows so that the CFL constraint is not too restrictive.
Similar content being viewed by others
References
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)
Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot { B}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)
Dedner, A., Kemm, F., Krner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)
Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows–a constrained transport method. Astrophys. J. 332, 659–677 (1988)
Frank, A., Jones, T.W., Ryu, D., Gaalaas, J.B.: The magnetohydrodynamic Kelvin–Helmholtz instability: a two-dimensional numerical study. Astrophys. J. 460, 777–793 (1996)
Fu, G.: An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Eng. 345, 502–517 (2019)
Fu, P., Li, F., Xu, Y.: Globally divergence-free discontinuous Galerkin methods for ideal magnetohydrodynamic equations. J. Sci. Comput. 77, 1621–1659 (2018)
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)
Lehrenfeld, C.: Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis, MathCCES/IGPM, RWTH Aachen (2010)
Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307, 339–361 (2016)
Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22(23), 413–442 (2005)
Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)
Orszag, S.A., Tang, C.-M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90, 129143 (1979)
Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)
Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014)
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)
Tóth, G.: The \(\nabla \cdot B=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)
Acknowledgements
The author would like to thank Prof. Chi-Wang Shu for suggesting to work on the problem, and for many helpful discussions concerning the subject. Part of this research was conducted using computational resources and services at the Center for Computation and Visualization, Brown University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fu, G. An Explicit Divergence-Free DG Method for Incompressible Magnetohydrodynamics. J Sci Comput 79, 1737–1752 (2019). https://doi.org/10.1007/s10915-019-00909-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00909-2