[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n, where \(n+1\) denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order \(\mathcal{O}(n^{-m}\log n)\) in the infinite norm and \(\mathcal{O}(n^{-m})\) in the weighted square norm. In addition, we prove that for sufficiently large n, the infinity-norm condition number of the coefficient matrix corresponding to the linear system is \(\mathcal{O}(\log ^2 n)\) and its spectral condition number is \(\mathcal{O}(1)\). Numerical examples are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Ali, I., Brunner, H., Tang, T.: Spectral methods for pantograph-type differential and integral equations with multiple delays. Front. Math. China 4, 49–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner, H.: Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, H.: A Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernels. Sci. China Math. 57, 2163–2178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Chen, Z., Zhang, Y.: Fast singularity preserving methods for integral equations with non-smooth solutions. J. Int. Equ. Appl. 24, 213–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Huang, M., Liu, L., Xu, Y.: Hybrid collocation methods for Fredholm integral equations with weakly singular kernels. Appl. Numer. Math. 57, 549–561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Xu, Y.: Singularity preserving Galerkin methods for weakly singular Fredholm integral equations. J. Int. Equ. Appl. 6, 303–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differrential equations. Math. Comput. 85, 1603–1638 (2016)

    Article  MATH  Google Scholar 

  12. Chen, S., Shen, J., Mao, Z.: Efficient and accurate spectral methods using general Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Tang, T.: Spectral methods for weakly singular Volterra integral equations with smooth solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Li, X., Tang, T.: A note on Jacobi-collocation method for weakly singular Volterra integral equations. J Comput. Math. 1, 47–56 (2013)

    Article  MATH  Google Scholar 

  15. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  16. Huang, C., Jiao, Y., Wang, L., Zhang, Z.: Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions. SIAM J. Numer. Anal. 54, 3357–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, C., Stynesz, M.: A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Adv. Comput. 42, 1015–1030 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, C., Stynesz, M.: Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind. IMA J. Numer. Anal. 7, 1411–1436 (2017)

    MathSciNet  Google Scholar 

  19. Huang, C., Tang, T., Zhang, Z.: Supergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutions. J. Comput. Math. 29, 698–719 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, M., Xu, Y.: Superconvergence of the iterated hybrid collocation method for weakly singular Volterra integral equations. J. Integral Equ. Appl. 18, 83–116 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kress, R.: Linear Integral Equations. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equatio. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, T., Lin, Y., Rao, M., Zhang, S.: Petrov–Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38, 937–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, T., Lin, Y., Luo, P., Zhang, S.: Petrov–Galerkin methods for nonlinear Volterra integro-differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B 8, 405–426 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China. 7, 69–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, X., Tang, T., Xu, C.: Parallel in time algorithm with spectral-subdomain enhancement for volterra integral equations. SIAM J. Numer. Anal. 51, 1735–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Tang, T., Xu, C.: Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methods. J. Sci. Comput. 67, 43–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mikhlin, S., Prossdorf, S.: Singular Integral Operators. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  29. Ragozin, D.: Constructive polynomial approximation on spheres and projective spaces. Trans. Am. Math. Soc. 162, 157–170 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Ragozin, D.: Polynomial approximation on compact manifolds and homogeneous spaces. Trans. Am. Math. Soc. 150, 41–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  32. Sheng, C., Wang, Z., Guo, B.: Multistep Legendre–Gauss spectral collocation method for nonlinear Volterra integra equations. SIAM J. Numer. Anal. 52, 1953–1980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang, T., Yuan, W.: The numerical solution of second-order weakly singular Volterra integro-differential equations. J. Comput. Math. 8, 307–320 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Tang, T., Xu, X., Chen, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Wei, Y., Chen, Y.: Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions. Adv. Appl. Math. Mech. 121, 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, Y., Chen, Y.: Convergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equations. Numer. Math. Theor. Methods Appl. 50, 419–438 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Wei, Y., Chen, Y.: Legendre spectral collocation method for neutral and high-order Volterra integro-differential equation. Appl. Numer. Math. 81, 15–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. 53, 414–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yi, L., Guo, B.: An h–p version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J Numer. Anal. 53, 2677–2704 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zayernouri, M., Karniadakis, G.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36, 40–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zayernouri, M., Karniadakis, G.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximations. J. Comput. Phys. 47, 2108–2131 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China ( 11671157, 91430104) and National Science Foundation of Shandong Province (ZR2014JL003). The authors thank the referees for very helpful suggestions, which help us improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Chen, Y. A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels. J Sci Comput 75, 970–992 (2018). https://doi.org/10.1007/s10915-017-0568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0568-7

Keywords

Mathematics Subject Classification

Navigation