[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Highest Superconvergence of the Tri-linear Element for Schr\(\ddot{\text {o}}\)dinger Operator with Singularity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the eigenvalues for Schr\(\ddot{\text {o}}\)dinger operator with singularity are analyzed. A special piecewise uniform rectangular partition is constructed and it has been proven that, under this partition, the tri-linear rectangular finite element method has the highest possible superconvergence rate for eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on the Exponential Decay of Solutions of Second-order Elliptic Operators. Princeton University Press, Princeton (1981)

    Google Scholar 

  2. Asadzadeh, M., Schatz, A., Wendland, W.: A non-standard approach to Richardson extrapolation in the finite element method for second order elliptic problems. Math. Comp. 78, 1951–1973 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Osborn, J.: Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues. SIAM J. Numer. Anal. 24, 1249–1276 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuska, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacuta, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of high order finite elements on polyhedra I: a priori estimates. Numer. Funct. Anal. Optim. 26, 613–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bacuta, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of high order finite elements on polyhedra II: mesh refinement and interpolation. Numer. Funct. Anal. Optim. 28, 775–824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k., An Augmented plane Wave \(+\) Local Orbitals Program for Calculating Crystal Properties., Karlheinz Schwarz, Techn. Universitt Wien, Austria (2001)

  8. Blum, H.: Numerical treatment of corner and crack singularities, in finite element and boundary element technique from a mathematical and engineering point of view. CISM Courses Lect. 301, 171–212 (1988)

    Google Scholar 

  9. Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansions and Richardson extrapolation for linear finite elements. Numer. Math. 49, 11–37 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blum, H., Rannache, R.: Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation. J. Comput. Math. 8(3), 321–332 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Cavalheiro, A.C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. 26, 117–132 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Chen, C., Lin, Q.: Extrapolation of finite element approximations in a rectangular domain. J. Comput. Math. 7, 235–255 (1989)

    Google Scholar 

  13. Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015 (2012)

    Article  MathSciNet  Google Scholar 

  14. Duran, G.: Error estimates for anisotropic finit elements and applications. In: Proceedings of the international congress of mathematicans, Madrid, Spain (2006)

  15. Gärding, L.: On the essential spectrum of Schr\(\ddot{\text{o}}\)dinger operators. J. Funct. Anal. 52, 1–10 (1983)

    Article  MathSciNet  Google Scholar 

  16. Greiner, W.: Quantum Mehcanics: An Introduction. Springer, Heidelberg (1989)

    Book  Google Scholar 

  17. Guo, B., Babuska, I.: Regularity of the solution for elliptic problems on nonsmooth domains in \(R^{3}\), Part I: countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. 127A, 77–126 (1997)

    Article  MathSciNet  Google Scholar 

  18. He, W., Guan, X., Cui, J.: The local superconvergence of the trilinear element for the three-dimensional Poisson problem. J. Math. Anal. Appl. 388, 863–872 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hunsicker, E., Li, H., Nistor, V., Uski, V.: Analysis of Schr\(\ddot{\text{o}}\)dinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case. Numer. Meth. Part. D. E. 30, 1130–1151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hunsicker, E., Nistor, V., Sofo, J.: Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions. J. Math. Phys. 49(8), 083501 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758 (1999)

    Article  Google Scholar 

  22. Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78, 713–737 (2009)

    Article  MATH  Google Scholar 

  23. Lin, Q.: Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners. Numer. Math. 58, 631–640 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, (2006)

  25. Lin, Q., Lu, T.: Asymptotic expansions for the finite element approximation of elliptic problems on polygonal domains. In: International conference on computational mathematics applied science engineering, Versailles (1983)

  26. Lin, Q., Zhu, Q.: Asymptotic expansion for the derivative of finite elements. J. Comput. Math. 2, 361–363 (1982)

    MathSciNet  Google Scholar 

  27. Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for elliptic problems in polyhedra. I: stability on geometric meshes. SIAM J. Numer. Anal. 51, 1610–1633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for second order elliptic problems in polyhedra I: stability on geometric meshes. SIAM J. Numer. Anal 51, 1610–1633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for second order elliptic problems in polyhedra II: exponential convergence. SIAM J. Numer. Anal. 51, 2005–2035 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shenk, N.A.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63(207), 105–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. von Petersdorf, T., Stephan, E.P.: Regularity of mixed boundary value problems in \(R^{3}\) and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12, 229–249 (1990)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence Property. SIAM J. Sci. Compu. 26, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming He.

Additional information

The first author is supported in part by the National Natural Science Foundation of China (11171257) and the Zhejiang Provincial Natural Science Foundation of China under Grant (No. Y15A010040); and the second author is supported in part by the US National Science Foundation through grant DMS-0115530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Zhang, Z. & Zhao, R. The Highest Superconvergence of the Tri-linear Element for Schr\(\ddot{\text {o}}\)dinger Operator with Singularity. J Sci Comput 66, 1–18 (2016). https://doi.org/10.1007/s10915-015-0007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0007-6

Keywords

Mathematics Subject Classification

Navigation