Abstract
In this paper, the eigenvalues for Schr\(\ddot{\text {o}}\)dinger operator with singularity are analyzed. A special piecewise uniform rectangular partition is constructed and it has been proven that, under this partition, the tri-linear rectangular finite element method has the highest possible superconvergence rate for eigenvalue.
Similar content being viewed by others
References
Agmon, S.: Lectures on the Exponential Decay of Solutions of Second-order Elliptic Operators. Princeton University Press, Princeton (1981)
Asadzadeh, M., Schatz, A., Wendland, W.: A non-standard approach to Richardson extrapolation in the finite element method for second order elliptic problems. Math. Comp. 78, 1951–1973 (2009)
Babuska, I., Osborn, J.: Estimates for the errors in eigenvalue and eigenvector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues. SIAM J. Numer. Anal. 24, 1249–1276 (1987)
Babuska, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)
Bacuta, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of high order finite elements on polyhedra I: a priori estimates. Numer. Funct. Anal. Optim. 26, 613–639 (2005)
Bacuta, C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of high order finite elements on polyhedra II: mesh refinement and interpolation. Numer. Funct. Anal. Optim. 28, 775–824 (2007)
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k., An Augmented plane Wave \(+\) Local Orbitals Program for Calculating Crystal Properties., Karlheinz Schwarz, Techn. Universitt Wien, Austria (2001)
Blum, H.: Numerical treatment of corner and crack singularities, in finite element and boundary element technique from a mathematical and engineering point of view. CISM Courses Lect. 301, 171–212 (1988)
Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansions and Richardson extrapolation for linear finite elements. Numer. Math. 49, 11–37 (1986)
Blum, H., Rannache, R.: Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation. J. Comput. Math. 8(3), 321–332 (1990)
Cavalheiro, A.C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. 26, 117–132 (2008)
Chen, C., Lin, Q.: Extrapolation of finite element approximations in a rectangular domain. J. Comput. Math. 7, 235–255 (1989)
Costabel, M., Dauge, M., Nicaise, S.: Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015 (2012)
Duran, G.: Error estimates for anisotropic finit elements and applications. In: Proceedings of the international congress of mathematicans, Madrid, Spain (2006)
Gärding, L.: On the essential spectrum of Schr\(\ddot{\text{o}}\)dinger operators. J. Funct. Anal. 52, 1–10 (1983)
Greiner, W.: Quantum Mehcanics: An Introduction. Springer, Heidelberg (1989)
Guo, B., Babuska, I.: Regularity of the solution for elliptic problems on nonsmooth domains in \(R^{3}\), Part I: countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. 127A, 77–126 (1997)
He, W., Guan, X., Cui, J.: The local superconvergence of the trilinear element for the three-dimensional Poisson problem. J. Math. Anal. Appl. 388, 863–872 (2012)
Hunsicker, E., Li, H., Nistor, V., Uski, V.: Analysis of Schr\(\ddot{\text{o}}\)dinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case. Numer. Meth. Part. D. E. 30, 1130–1151 (2014)
Hunsicker, E., Nistor, V., Sofo, J.: Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions. J. Math. Phys. 49(8), 083501 (2008)
Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758 (1999)
Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78, 713–737 (2009)
Lin, Q.: Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners. Numer. Math. 58, 631–640 (1991)
Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, (2006)
Lin, Q., Lu, T.: Asymptotic expansions for the finite element approximation of elliptic problems on polygonal domains. In: International conference on computational mathematics applied science engineering, Versailles (1983)
Lin, Q., Zhu, Q.: Asymptotic expansion for the derivative of finite elements. J. Comput. Math. 2, 361–363 (1982)
Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for elliptic problems in polyhedra. I: stability on geometric meshes. SIAM J. Numer. Anal. 51, 1610–1633 (2013)
Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for second order elliptic problems in polyhedra I: stability on geometric meshes. SIAM J. Numer. Anal 51, 1610–1633 (2013)
Schötzau, D., Schwab, C., Wihler, T.P.: \(hp-\)dGFEM for second order elliptic problems in polyhedra II: exponential convergence. SIAM J. Numer. Anal. 51, 2005–2035 (2013)
Shenk, N.A.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63(207), 105–119 (1994)
von Petersdorf, T., Stephan, E.P.: Regularity of mixed boundary value problems in \(R^{3}\) and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12, 229–249 (1990)
Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence Property. SIAM J. Sci. Compu. 26, 1192–1213 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author is supported in part by the National Natural Science Foundation of China (11171257) and the Zhejiang Provincial Natural Science Foundation of China under Grant (No. Y15A010040); and the second author is supported in part by the US National Science Foundation through grant DMS-0115530.
Rights and permissions
About this article
Cite this article
He, W., Zhang, Z. & Zhao, R. The Highest Superconvergence of the Tri-linear Element for Schr\(\ddot{\text {o}}\)dinger Operator with Singularity. J Sci Comput 66, 1–18 (2016). https://doi.org/10.1007/s10915-015-0007-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0007-6