[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Error Analysis of Chebyshev-Legendre Pseudo-spectral Method for a Class of Nonclassical Parabolic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Many physical phenomena are modeled by nonclassical parabolic initial boundary value problems which involve a nonclassical term u xxt in the governed equation. Combining with the Crank-Nicolson/leapfrog scheme in time discretization, Chebyshev-Legendre pseudo-spectral method is applied to space discretization for numerically solving the nonclassical parabolic equation. The proposed approach is based on Legendre Galerkin formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation. By using the proposed method, the computational complexity is reduced and both accuracy and efficiency are achieved. The stability and convergence are rigorously set up. The convergence rate shows ‘spectral accuracy’. Numerical experiments are presented to demonstrate the effectiveness of the method and to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, C.E.: On the problem of diffusion in solids. Acta Mech. 37, 265–296 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, B.K., Rohklin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12, 158–179 (1991)

    Article  MATH  Google Scholar 

  3. Bergh, J., Löfsröm, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Techniques of Scientific Computing (Part 2), vol. V, pp. 209–486. North-Holland, Amsterdam (1997)

    Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2000)

    Google Scholar 

  6. Cannon, J.R., Salman, M.: On a class of nonlinear nonclassical parabolic equations. Appl. Anal. 85(1), 23–44 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannon, J.R., Yin, H.M.: On a class of non-classical parabolic problems. Differ. Equ. 79, 266–288 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Dehghan, M.: Numerical solution of a nonlocal boundary value problem with Neumann’s boundary conditions. Commun. Numer. Methods Eng. 19, 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M.: Numerical approximations for solving a time-dependent partial differential equation with non-classical specification on four boundaries. Appl. Math. Comput. 167(1), 28–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan, M.: Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl. Numer. Math. 52(1), 39–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M.: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer. Methods Partial Differ. Equ. 22(1), 220–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Don, W.S., Gotlieb, D.: The Chebyshev-Legendre methods: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golbabai, A., Javidi, M.: A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method. Appl. Math. Comput. 190(1), 179–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, B.Y.: The Spectral Methods and Its Applications. World Scientific, Singapore (1998)

    Book  Google Scholar 

  15. Jesevičiūtė, Ž., Sapagovas, M.: On the stability of finite-difference schemes for parabolic equations subject to integral conditions with applications to thermoelasticity. Comput. Methods Appl. Math. 8(4), 360–373 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Li, D.S., Wang, Z.X., Wang, Z.L.: Global existence, uniqueness and long-time behaviour for nonclassical diffusion equations. Acta Math. Appl. Sin. 21, 267–276 (1998)

    MATH  Google Scholar 

  17. Liu, Y.F., Ma, Q.Z.: Exponential attractors for a nonclassical diffusion equation. Electron. J. Differ. Equ. 2009(9), 1–7 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Ma, H.-P.: Chebyshev-Legendre spectral viscosity method for nonlinear conservative laws. SIAM J. Numer. Anal. 35, 869–892 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, H.-P.: Chebyshev-Legendre super spectral viscosity method for nonlinear conservative laws. SIAM J. Numer. Anal. 35, 893–908 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, H.-P., Sun, W.-W.: A Legendre-Petrov-Galerkin and Chebyshev collocation method for the KdV equation. SIAM J. Numer. Anal. 38, 1425–1438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)

    Google Scholar 

  22. Shen, J.: Efficient Chebyshev-Legendre Galerkin methods for elliptic problems. In: Proceedings of ICOSAHOM’95. Houston J. Math, pp. 233–239 (1996)

    Google Scholar 

  23. Shen, J.: Efficient spectral-Galerkin method I: direct solver of second and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  25. Strain, J.: Spectral methods for nonlinear parabolic equations. J. Comput. Phys. 122, 1–12 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, C.Y., Wang, S.Y., Zhong, C.K.: Global attractors for a nonclassical diffusion equation. Acta Math. Sin. Engl. Ser. 23, 1271–1280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  28. Wang, S.Y., Li, D.S., Zhong, C.K.: On the dynamics of a class of nonclassical parabolic equations. J. Math. Anal. Appl. 317(2), 565–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, H., Ma, H.-P., Li, H.Y.: optimal error estimates of the Chebyshev-Legendre method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiao, Y.L.: Attractors for a nonclassical diffusion equation. Acta Math. Appl. Sin. 18, 273–276 (2002)

    Article  MATH  Google Scholar 

  31. Zhou, Y.F., Cui, M.G., Lin, Y.Z.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230(2), 770–780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinggang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Wu, Y. & Ma, H. Error Analysis of Chebyshev-Legendre Pseudo-spectral Method for a Class of Nonclassical Parabolic Equation. J Sci Comput 52, 588–602 (2012). https://doi.org/10.1007/s10915-011-9560-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9560-9

Keywords

Navigation