[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

C-eigenvalues of piezoelectric-type tensors play an important role in piezoelectric effect and converse piezoelectric effect. While the largest C-eigenvalue of a given piezoelectric-type tensor has concrete physical meaning which determines the highest piezoelectric coupling constant. In this paper, we focus on computing the maximum C-eigenvalue of piezoelectric-type tensors which is a third degree polynomial problem. To do that, we first establish the equivalence between the proposed polynomial optimization problem (POP) and a multi-linear optimization problem (MOP) under conditions that the original objective function is concave. Then, an augmented POP (which can also be regarded as a regularized POP) is introduced for the purpose to guarantee the concavity of the underlying objective function. Theoretically, both the augmented POP and the original problem share the same optimal solutions when the compact sets are specified as unit spheres. By exploiting the multi-block structure of the resulting MOP, we accordingly propose a proximal alternating minimization algorithm to get an approximate optimal value of the maximum C-eigenvalue. Furthermore, convergence of the proposed algorithm is established under mild conditions. Finally, some preliminary computational results on synthetic data sets are reported to show the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized GaussCSeidel methods. Math. Program. 137(1), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barmpoutis, A., Jian, B., Vemuri, B., Shepherd, T.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemijer, N., Lelieveldt, B. (eds.) Lecture Notes in Computer Science, pp. 308–319. Springer, New York (2007)

    Google Scholar 

  4. Che, H., Chen, H., Wang, Y.: C-eigenvalue inclusion theorems for piezoelectric-type tensors. Appl. Math. Lett. 89, 41–49 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Chen, Y., Li, G., Qi, L.: A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer. Linear Algebra Appl. 25(1), e2125 (2018)

  6. Chen, Y., Jákli, A., Qi, L.: Spectral analysis of piezoelectric tensors, arXiv:1703.07937v1, (2017)

  7. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22, 87–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Huang, Z., Qi, L.: Copositivity detection of tensors: theory and algorithm. J. Optim. Theory Appl. 174, 746–761 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Huang, Z., Qi, L.: Copositive tensor detection and its applications in physics and hypergraphs. Comput. Optim. Appl. 69, 133–158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curie, J., Curie, P.: Développment, par pression, de lélectricité polaire dans les cristaux hmidres à faces inclinées. C. R. 91, 294–295 (1880)

    Google Scholar 

  11. de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K.A.: A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015)

    Article  Google Scholar 

  12. Gaeta, G., Virga, E.G.: Octupolar order in three dimensions. Eur. Phys. J. E 39(11), 113 (2016)

    Article  Google Scholar 

  13. Haussühl, S.: Physical Properties of Crystals: An Introduction. Wiley-VCH Verlag, Weinheim (2007)

    Book  Google Scholar 

  14. Hof, P., Scherer, C., Heuberger, P.: Model-Based Control: Bridging Rigorous Theory and Advanced Technology: Part I. Springer, New York (2009)

    Book  Google Scholar 

  15. Hu, S.L., Huang, Z.: Alternating direction method for bi-quadratic programming. J. Global Optim. 51, 429–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jerphagnon, J.: Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities. Phys. Rev. B 2(4), 10–91 (1970)

    Article  Google Scholar 

  17. Jiang, B., Ma, S., Zhang, S.: Alternating direction method of multipliers for real and complex polynomial optimization models. Optimization 63, 883–898 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kholkin, A.L., Pertsev, N.A., Goltsev, A.V.: Piezolelectricity and crystal symmetry. In: Safari, A. (ed.), Piezoelectric and Acoustic Materials. Springer, New York (2008)

  19. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenvalues. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kulagin, I.A., Ganeev, R.A., Tugushev, R.I.: Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals. Quantum Electron. 34(7), 657 (2004)

    Article  Google Scholar 

  21. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Liu, Y., Li, Y.: C-eigenvalues intervals for piezoelectric-type tensors. Appl. Math. Comput. 358, 244–250 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lovett, D.R.: Tensor Properties of Crystals, 2nd edn. Institute of Physics Publishing, Bristol (1989)

    MATH  Google Scholar 

  24. Nie, J.: Polynomial optimization with real varieties. SIAM J. Optim. 23, 1634–1646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151, 555–583 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie, J.: Generating polynomials and symmetric tensor decomposition. Found. Comput. Math. 17, 423–465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  29. Parrilo, P.: Structured semidefinite programs and semialgebraic geometrymethods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, California (2000)

  30. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Razaviyayn, M., Hong, M., Luo, Z.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soare, S., Yoon, J., Cazacu, O.: On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int. J. Plasticity 24, 915–944 (2008)

    Article  MATH  Google Scholar 

  33. Tseng, P.: Convergenc of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Caccetta, L., Zhou, G.: Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer. Linear Algebra Appl. 22, 1059–1076 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, G., Caccette, L., Teo, K., Wu, S.: Nonnegative polynomial optimization over unit spheres and convex programming relaxations. SIAM J. Optim. 22, 987–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the two anonymous referees for their valuable comments, which greatly helped us to improve the quality of this paper. H. Chen was supported in part by National Natural Science Foundation of China (NSFC) (No. 12071249), and Shandong Province Natural Science Foundation of Distinguished Young Scholars (No. ZR2021JQ01). Y. Wang was supported in part by NSFC (No. 12071250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we present detailed proofs for Theorem 5.

Proof of Theorem 5

  1. (1)

    Since \(f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\) is a linear function with respect to \(\mathbf{x}\), we know that, for \(k\in N\), it follows that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle . \end{aligned}$$
    (20)

    If \(\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=\mathbf{0}\), then \(\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}\) from Algorithm 2 and

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$

    If \(\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\ne \mathbf{0}\), by (20), it follows that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})&=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), ~\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \\&=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}),\\&\quad \,-\frac{\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})}{\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\Vert }-\mathbf{x}^{(k)}\rangle \\&=-\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\Vert \\&\quad \,-\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k)}\rangle . \end{aligned}$$

    Combining this with the Cauchy-schwarz inequality and \(\Vert \mathbf{x}^{(k)}\Vert =1\), we know that

    $$\begin{aligned} \langle \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \le 0, \end{aligned}$$

    which implies that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\le f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$
    (21)

    On the other hand, we can prove similarly that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\le f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$
    (22)

    Combining (21) with (22), that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\le f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$

    On the other hand, if there exists a k such that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})= f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \end{aligned}$$

    then, by (21)–(22), we have

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})= f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})= f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$

    From (20) and the fact that \(\Vert \mathbf{x}^{(k+1)}\Vert =\Vert \mathbf{x}^{(k)}\Vert =1\), we know that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})< f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}) \Leftrightarrow \mathbf{x}^{(k+1)}\ne \mathbf{x}^{(k)}. \end{aligned}$$

    Similarly, we can obtain that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})< f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}) \Leftrightarrow \mathbf{y}^{(k+1)}\ne \mathbf{y}^{(k)}, \end{aligned}$$

    which means that \(\{f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\}\) is strictly decreasing.

  2. (2)

    If Algorithm 2 terminates in finite steps, without loss of generality, suppose it stops at the t-th iterative step. From the proof of (1), it holds that

    $$\begin{aligned} f_{\alpha }(\mathbf{x}^{(t+1)}, \mathbf{y}^{(t+1)}, \mathbf{y}^{(t+1)})=f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)}) \quad and \quad \mathbf{x}^{(t+1)}=\mathbf{x}^{(t)},~ \mathbf{y}^{(t+1)}=\mathbf{y}^{(t)}. \end{aligned}$$

    Then, by Algorithm 2, it follows that

    $$\begin{aligned} \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})=0,~~~\nabla _\mathbf{y}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})=0. \end{aligned}$$

    Thus, for any \(\mathbf{x}, \mathbf{y}\in D\), it holds that

    $$\begin{aligned} \langle \mathbf{x}-\mathbf{x}^{(t)}, \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})\rangle +\langle \mathbf{y}-\mathbf{y}^{(t)}, \nabla _\mathbf{y}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})\rangle =0, \end{aligned}$$

    which implies that \((\mathbf{x}^{(t)}, \mathbf{y}^{(t)})\) is a stationary point of (6).

  3. (3)

    In this case, from the proof of (1), we know that

    $$\begin{aligned} \begin{aligned}&f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad \le f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad =\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \le 0. \end{aligned} \end{aligned}$$

    Since the sequence \(\{f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\}\) is bounded and monotonic, it follows that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\langle \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle =0. \end{aligned}$$
    (23)

    On the other hand, since the generated sequence \(\{(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})\}\) is bounded, it has at least one accumulation point. Without loss of generality, assume \((\hat{\mathbf{x}}, \hat{\mathbf{y}})\) is an accumulation point of the subsequence \(\{(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)})\}\) such that \(\Vert \hat{\mathbf{x}}\Vert =\Vert \hat{\mathbf{y}}\Vert =1.\) By the continuity of \(\nabla _{\mathbf{x}}f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\), if it holds that

    $$\begin{aligned} \lim \limits _{j\rightarrow \infty }\nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})=\nabla _\mathbf{x}f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})=\mathcal {A}\hat{\mathbf{y}}\hat{\mathbf{y}}-\alpha \hat{\mathbf{x}}=0, \end{aligned}$$

    we obtain that

    $$\begin{aligned} {\mathcal {A}}\hat{\mathbf{y}}\hat{\mathbf{y}}=\alpha \hat{\mathbf{x}} \end{aligned}$$
    (24)

    If \(\lim \limits _{j\rightarrow \infty }\nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\ne 0\), by Algorithm 2, (20) and (23) it follows that

    $$\begin{aligned} \begin{aligned} 0&=\lim _{j\rightarrow \infty }\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), ~\mathbf{x}^{(k_j+1)}-\mathbf{x}^{(k_j)}\rangle \\&=\lim _{j\rightarrow \infty }\left\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), -\frac{\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})}{\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\Vert }-\mathbf{x}^{(k_j)}\right\rangle \\&=\lim _{j\rightarrow \infty }\left( -\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\Vert -\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), \hat{\mathbf{x}}\rangle \right) \\&=-\Vert \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert -\langle \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}}), \hat{\mathbf{x}}\rangle . \end{aligned} \end{aligned}$$

    Combining this with the fact that \(\Vert \hat{\mathbf{x}}\Vert =1\), we know that

    $$\begin{aligned} \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})=-\Vert \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert \hat{\mathbf{x}}, \end{aligned}$$

    which implies that

    $$\begin{aligned} {\mathcal {A}}\hat{\mathbf{y}}\hat{\mathbf{y}}=(\alpha -\Vert \nabla _\mathbf{x}f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert )\hat{\mathbf{x}}. \end{aligned}$$
    (25)

    Combining (24) and (25), we obtain the \(\hat{\mathbf{x}}\)-part KKT system for the problem of (6). Similarly, we can obtain the \(\hat{\mathbf{y}}\)-part for the KKT system, which implies that \((\hat{\mathbf{x}}, \hat{\mathbf{y}})\) is a KKT point of problem (6).

  4. (4)

    To prove

    $$\begin{aligned} \lim _{k\rightarrow \infty }\Vert (\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)})-(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})\Vert =0, \end{aligned}$$

    it suffices to prove that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\Vert =0,~~\text{ and }~~\lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\Vert =0. \end{aligned}$$

    From (23), it is not difficult to show that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\left( \Vert \mathbf{x}^{(k+1)}\Vert ^{2}-\langle \mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}\rangle \right) =0, \end{aligned}$$

    which implies that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\langle \mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}\rangle =\lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}\Vert ^{2}=1. \end{aligned}$$

    So, it follows that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\Vert =0. \end{aligned}$$

    On the other hand, if \(f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\) is strictly concave with respect to \(\mathbf{y}\in D\), then \(\nabla ^2_{\mathbf{y}}f_{\alpha }(\mathbf{x},\mathbf{y},\mathbf{y})\) is negative definite and \(\nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x},\mathbf{y},\mathbf{y})\ne \mathbf{0}\) for any \(\mathbf{y}\in D\). By the property of concave functions, it holds that

    $$\begin{aligned}&f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})-f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad <\langle \nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x}^{(k+1)},\mathbf{y}^{(k)},\mathbf{y}^{(k)}), \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\rangle . \end{aligned}$$

    Due to a similar proof of (23), we obtain that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\langle \nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x}^{(k+1)},\mathbf{y}^{(k)},\mathbf{y}^{(k)}), \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\rangle =0, \end{aligned}$$

    which implies that

    $$\begin{aligned} \lim _{k\rightarrow \infty }\left( \Vert \mathbf{y}^{(k+1)}\Vert ^{2}-\langle \mathbf{y}^{(k+1)}, \mathbf{y}^{(k)}\rangle \right) =0 \end{aligned}$$

    and

    $$\begin{aligned} \lim _{k\rightarrow \infty }\langle \mathbf{y}^{(k+1)}, \mathbf{y}^{(k)}\rangle =\lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}\Vert ^{2}=1. \end{aligned}$$

    Thus, we have

    $$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\Vert =0 \end{aligned}$$

    and the desired results hold. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, H., Wang, Y. et al. A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors. J Glob Optim 87, 405–422 (2023). https://doi.org/10.1007/s10898-022-01180-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01180-w

Keywords

Mathematics Subject Classification

Navigation