Abstract
C-eigenvalues of piezoelectric-type tensors play an important role in piezoelectric effect and converse piezoelectric effect. While the largest C-eigenvalue of a given piezoelectric-type tensor has concrete physical meaning which determines the highest piezoelectric coupling constant. In this paper, we focus on computing the maximum C-eigenvalue of piezoelectric-type tensors which is a third degree polynomial problem. To do that, we first establish the equivalence between the proposed polynomial optimization problem (POP) and a multi-linear optimization problem (MOP) under conditions that the original objective function is concave. Then, an augmented POP (which can also be regarded as a regularized POP) is introduced for the purpose to guarantee the concavity of the underlying objective function. Theoretically, both the augmented POP and the original problem share the same optimal solutions when the compact sets are specified as unit spheres. By exploiting the multi-block structure of the resulting MOP, we accordingly propose a proximal alternating minimization algorithm to get an approximate optimal value of the maximum C-eigenvalue. Furthermore, convergence of the proposed algorithm is established under mild conditions. Finally, some preliminary computational results on synthetic data sets are reported to show the efficiency of the proposed algorithm.
Similar content being viewed by others
References
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized GaussCSeidel methods. Math. Program. 137(1), 91–129 (2013)
Barmpoutis, A., Jian, B., Vemuri, B., Shepherd, T.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemijer, N., Lelieveldt, B. (eds.) Lecture Notes in Computer Science, pp. 308–319. Springer, New York (2007)
Che, H., Chen, H., Wang, Y.: C-eigenvalue inclusion theorems for piezoelectric-type tensors. Appl. Math. Lett. 89, 41–49 (2019)
Chen, H., Chen, Y., Li, G., Qi, L.: A semidefinite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer. Linear Algebra Appl. 25(1), e2125 (2018)
Chen, Y., Jákli, A., Qi, L.: Spectral analysis of piezoelectric tensors, arXiv:1703.07937v1, (2017)
Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. 22, 87–107 (2012)
Chen, H., Huang, Z., Qi, L.: Copositivity detection of tensors: theory and algorithm. J. Optim. Theory Appl. 174, 746–761 (2017)
Chen, H., Huang, Z., Qi, L.: Copositive tensor detection and its applications in physics and hypergraphs. Comput. Optim. Appl. 69, 133–158 (2018)
Curie, J., Curie, P.: Développment, par pression, de lélectricité polaire dans les cristaux hmidres à faces inclinées. C. R. 91, 294–295 (1880)
de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K.A.: A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015)
Gaeta, G., Virga, E.G.: Octupolar order in three dimensions. Eur. Phys. J. E 39(11), 113 (2016)
Haussühl, S.: Physical Properties of Crystals: An Introduction. Wiley-VCH Verlag, Weinheim (2007)
Hof, P., Scherer, C., Heuberger, P.: Model-Based Control: Bridging Rigorous Theory and Advanced Technology: Part I. Springer, New York (2009)
Hu, S.L., Huang, Z.: Alternating direction method for bi-quadratic programming. J. Global Optim. 51, 429–446 (2011)
Jerphagnon, J.: Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities. Phys. Rev. B 2(4), 10–91 (1970)
Jiang, B., Ma, S., Zhang, S.: Alternating direction method of multipliers for real and complex polynomial optimization models. Optimization 63, 883–898 (2014)
Kholkin, A.L., Pertsev, N.A., Goltsev, A.V.: Piezolelectricity and crystal symmetry. In: Safari, A. (ed.), Piezoelectric and Acoustic Materials. Springer, New York (2008)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenvalues. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)
Kulagin, I.A., Ganeev, R.A., Tugushev, R.I.: Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals. Quantum Electron. 34(7), 657 (2004)
Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)
Li, C., Liu, Y., Li, Y.: C-eigenvalues intervals for piezoelectric-type tensors. Appl. Math. Comput. 358, 244–250 (2019)
Lovett, D.R.: Tensor Properties of Crystals, 2nd edn. Institute of Physics Publishing, Bristol (1989)
Nie, J.: Polynomial optimization with real varieties. SIAM J. Optim. 23, 1634–1646 (2013)
Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151, 555–583 (2015)
Nie, J.: Generating polynomials and symmetric tensor decomposition. Found. Comput. Math. 17, 423–465 (2017)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon Press, Oxford (1985)
Parrilo, P.: Structured semidefinite programs and semialgebraic geometrymethods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, California (2000)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)
Razaviyayn, M., Hong, M., Luo, Z.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)
Soare, S., Yoon, J., Cazacu, O.: On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int. J. Plasticity 24, 915–944 (2008)
Tseng, P.: Convergenc of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109, 475–494 (2001)
Wang, Y., Caccetta, L., Zhou, G.: Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer. Linear Algebra Appl. 22, 1059–1076 (2015)
Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)
Zhou, G., Caccette, L., Teo, K., Wu, S.: Nonnegative polynomial optimization over unit spheres and convex programming relaxations. SIAM J. Optim. 22, 987–1008 (2012)
Acknowledgements
The authors would like to thank the editor and the two anonymous referees for their valuable comments, which greatly helped us to improve the quality of this paper. H. Chen was supported in part by National Natural Science Foundation of China (NSFC) (No. 12071249), and Shandong Province Natural Science Foundation of Distinguished Young Scholars (No. ZR2021JQ01). Y. Wang was supported in part by NSFC (No. 12071250).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
In this appendix, we present detailed proofs for Theorem 5.
Proof of Theorem 5
-
(1)
Since \(f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\) is a linear function with respect to \(\mathbf{x}\), we know that, for \(k\in N\), it follows that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle . \end{aligned}$$(20)If \(\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=\mathbf{0}\), then \(\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}\) from Algorithm 2 and
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})=f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$If \(\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\ne \mathbf{0}\), by (20), it follows that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})&=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), ~\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \\&=\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}),\\&\quad \,-\frac{\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})}{\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\Vert }-\mathbf{x}^{(k)}\rangle \\&=-\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\Vert \\&\quad \,-\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k)}\rangle . \end{aligned}$$Combining this with the Cauchy-schwarz inequality and \(\Vert \mathbf{x}^{(k)}\Vert =1\), we know that
$$\begin{aligned} \langle \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \le 0, \end{aligned}$$which implies that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\le f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$(21)On the other hand, we can prove similarly that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\le f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$(22)Combining (21) with (22), that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\le f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$On the other hand, if there exists a k such that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})= f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \end{aligned}$$$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})= f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})= f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}). \end{aligned}$$From (20) and the fact that \(\Vert \mathbf{x}^{(k+1)}\Vert =\Vert \mathbf{x}^{(k)}\Vert =1\), we know that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})< f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}) \Leftrightarrow \mathbf{x}^{(k+1)}\ne \mathbf{x}^{(k)}. \end{aligned}$$Similarly, we can obtain that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})< f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}) \Leftrightarrow \mathbf{y}^{(k+1)}\ne \mathbf{y}^{(k)}, \end{aligned}$$which means that \(\{f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})\}\) is strictly decreasing.
-
(2)
If Algorithm 2 terminates in finite steps, without loss of generality, suppose it stops at the t-th iterative step. From the proof of (1), it holds that
$$\begin{aligned} f_{\alpha }(\mathbf{x}^{(t+1)}, \mathbf{y}^{(t+1)}, \mathbf{y}^{(t+1)})=f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)}) \quad and \quad \mathbf{x}^{(t+1)}=\mathbf{x}^{(t)},~ \mathbf{y}^{(t+1)}=\mathbf{y}^{(t)}. \end{aligned}$$Then, by Algorithm 2, it follows that
$$\begin{aligned} \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})=0,~~~\nabla _\mathbf{y}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})=0. \end{aligned}$$Thus, for any \(\mathbf{x}, \mathbf{y}\in D\), it holds that
$$\begin{aligned} \langle \mathbf{x}-\mathbf{x}^{(t)}, \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})\rangle +\langle \mathbf{y}-\mathbf{y}^{(t)}, \nabla _\mathbf{y}f_{\alpha }(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}, \mathbf{y}^{(t)})\rangle =0, \end{aligned}$$which implies that \((\mathbf{x}^{(t)}, \mathbf{y}^{(t)})\) is a stationary point of (6).
-
(3)
In this case, from the proof of (1), we know that
$$\begin{aligned} \begin{aligned}&f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad \le f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})-f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad =\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle \le 0. \end{aligned} \end{aligned}$$Since the sequence \(\{f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\}\) is bounded and monotonic, it follows that
$$\begin{aligned} \lim _{k\rightarrow \infty }\langle \nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)}), \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\rangle =0. \end{aligned}$$(23)On the other hand, since the generated sequence \(\{(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})\}\) is bounded, it has at least one accumulation point. Without loss of generality, assume \((\hat{\mathbf{x}}, \hat{\mathbf{y}})\) is an accumulation point of the subsequence \(\{(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)})\}\) such that \(\Vert \hat{\mathbf{x}}\Vert =\Vert \hat{\mathbf{y}}\Vert =1.\) By the continuity of \(\nabla _{\mathbf{x}}f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\), if it holds that
$$\begin{aligned} \lim \limits _{j\rightarrow \infty }\nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})=\nabla _\mathbf{x}f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})=\mathcal {A}\hat{\mathbf{y}}\hat{\mathbf{y}}-\alpha \hat{\mathbf{x}}=0, \end{aligned}$$we obtain that
$$\begin{aligned} {\mathcal {A}}\hat{\mathbf{y}}\hat{\mathbf{y}}=\alpha \hat{\mathbf{x}} \end{aligned}$$(24)If \(\lim \limits _{j\rightarrow \infty }\nabla _\mathbf{x}f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\ne 0\), by Algorithm 2, (20) and (23) it follows that
$$\begin{aligned} \begin{aligned} 0&=\lim _{j\rightarrow \infty }\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), ~\mathbf{x}^{(k_j+1)}-\mathbf{x}^{(k_j)}\rangle \\&=\lim _{j\rightarrow \infty }\left\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), -\frac{\nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})}{\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\Vert }-\mathbf{x}^{(k_j)}\right\rangle \\&=\lim _{j\rightarrow \infty }\left( -\Vert \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)})\Vert -\langle \nabla _\mathbf{x} f_{\alpha }(\mathbf{x}^{(k_j)}, \mathbf{y}^{(k_j)}, \mathbf{y}^{(k_j)}), \hat{\mathbf{x}}\rangle \right) \\&=-\Vert \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert -\langle \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}}), \hat{\mathbf{x}}\rangle . \end{aligned} \end{aligned}$$Combining this with the fact that \(\Vert \hat{\mathbf{x}}\Vert =1\), we know that
$$\begin{aligned} \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})=-\Vert \nabla _\mathbf{x} f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert \hat{\mathbf{x}}, \end{aligned}$$which implies that
$$\begin{aligned} {\mathcal {A}}\hat{\mathbf{y}}\hat{\mathbf{y}}=(\alpha -\Vert \nabla _\mathbf{x}f_{\alpha }(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{y}})\Vert )\hat{\mathbf{x}}. \end{aligned}$$(25)Combining (24) and (25), we obtain the \(\hat{\mathbf{x}}\)-part KKT system for the problem of (6). Similarly, we can obtain the \(\hat{\mathbf{y}}\)-part for the KKT system, which implies that \((\hat{\mathbf{x}}, \hat{\mathbf{y}})\) is a KKT point of problem (6).
-
(4)
To prove
$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert (\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)})-(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})\Vert =0, \end{aligned}$$it suffices to prove that
$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\Vert =0,~~\text{ and }~~\lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\Vert =0. \end{aligned}$$From (23), it is not difficult to show that
$$\begin{aligned} \lim _{k\rightarrow \infty }\left( \Vert \mathbf{x}^{(k+1)}\Vert ^{2}-\langle \mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}\rangle \right) =0, \end{aligned}$$which implies that
$$\begin{aligned} \lim _{k\rightarrow \infty }\langle \mathbf{x}^{(k+1)}, \mathbf{x}^{(k)}\rangle =\lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}\Vert ^{2}=1. \end{aligned}$$So, it follows that
$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\Vert =0. \end{aligned}$$On the other hand, if \(f_{\alpha }(\mathbf{x}, \mathbf{y}, \mathbf{y})\) is strictly concave with respect to \(\mathbf{y}\in D\), then \(\nabla ^2_{\mathbf{y}}f_{\alpha }(\mathbf{x},\mathbf{y},\mathbf{y})\) is negative definite and \(\nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x},\mathbf{y},\mathbf{y})\ne \mathbf{0}\) for any \(\mathbf{y}\in D\). By the property of concave functions, it holds that
$$\begin{aligned}&f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k+1)}, \mathbf{y}^{(k+1)})-f_{\alpha }(\mathbf{x}^{(k+1)}, \mathbf{y}^{(k)}, \mathbf{y}^{(k)})\\&\quad <\langle \nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x}^{(k+1)},\mathbf{y}^{(k)},\mathbf{y}^{(k)}), \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\rangle . \end{aligned}$$Due to a similar proof of (23), we obtain that
$$\begin{aligned} \lim _{k\rightarrow \infty }\langle \nabla _{\mathbf{y}}f_{\alpha }(\mathbf{x}^{(k+1)},\mathbf{y}^{(k)},\mathbf{y}^{(k)}), \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\rangle =0, \end{aligned}$$which implies that
$$\begin{aligned} \lim _{k\rightarrow \infty }\left( \Vert \mathbf{y}^{(k+1)}\Vert ^{2}-\langle \mathbf{y}^{(k+1)}, \mathbf{y}^{(k)}\rangle \right) =0 \end{aligned}$$and
$$\begin{aligned} \lim _{k\rightarrow \infty }\langle \mathbf{y}^{(k+1)}, \mathbf{y}^{(k)}\rangle =\lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}\Vert ^{2}=1. \end{aligned}$$Thus, we have
$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert \mathbf{y}^{(k+1)}-\mathbf{y}^{(k)}\Vert =0 \end{aligned}$$and the desired results hold. \(\square \)
Rights and permissions
About this article
Cite this article
Wang, W., Chen, H., Wang, Y. et al. A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors. J Glob Optim 87, 405–422 (2023). https://doi.org/10.1007/s10898-022-01180-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-022-01180-w