Abstract
This paper presents the development of a quad-rotor robotic platform equipped with a visual and inertial motion estimation system. Our objective consists of developing a UAV capable of autonomously perform take-off, positioning, navigation and landing in unknown environments. In order to provide accurate estimates of the UAV position and velocity, stereo visual odometry and inertial measurements are fused using a Kalman Filter. Real-time experiments consisting on motion detection and autonomous positioning demonstrate the performance of the robotic platform.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Reinhardt, J.R., James, J.E., Flannagan, E.M.: Future employment of UAVS: issues of jointness. Joint Force Q. 22, 36–41 (1999)
He, R., Prentice, S., Roy, N.: Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: IEEE International Conference on Robotics and Automation. Pasadena, CA, USA (2008)
Zufferey, J.C., Floreano, D.: Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control. In: IEEE International Conference on Robotics and Automation. Barcelona, Spain (2005)
Hrabar, S., Sukhatme, G.: Vision-based navigation through urban canyons. J. Field Robot. 26(5), 431–452 (2009)
Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)
Corke, P.I., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: IEEE International Conference on Intelligent Robots and Systems. Sendai, Japan (2004)
Levin, A., Szeliski, R.: Visual odometry and map correlation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA (2004)
Bloesch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA (2010)
Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the Mars exploration rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)
Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Robot. Syst. 21(2), 43–51 (2004)
Kelly, J., Saripalli, S., Sukhatme, G.S.: Combined visual and inertial navigation for an unmanned aerial vehicle. In: International Conference on Field and Service Robotics. Chamonix, France (2007)
Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Unmanned Systems Technology XI, Proc. of SPIE, vol. 7332 (2009)
Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)
Etkin, B., Reid, L.D.: Dynamics of Flight. John Wiley and Sons, Inc., New York (1959). ISBN 0-471-03418-5
Goldstein, H.: Classical Mechanics, 2nd edn. Addison Wesley, Redwood City (1980)
Altuğ, E., Ostrowski, J.P. Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Rob. Res. 24(5), 329–341 (2005)
Sünderhauf, N., Protzel, P.: Stereo odometry—a review of approaches, technical report 3/07. Institute of Automation, Department of Electrical Engineering and Information Technology. Chemnitz University of Technology (2007)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. Seattle, USA (1994)
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker: description of the algorithm. Microprocessor Research Labs, Intel Corporation (2002)
Open Computer Vision: http://sourceforge.net/projects/opencvlibrary/. Accessed December 2010
Bouguet, J.Y.: Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed December 2010
Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer, New York (2005)
Achtelik, M.: Vision-based pose estimation for autonomous micro aerial vehicles in gps-denied areas. Master’s thesis, Technische Universitat Munchen (2009)
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Nister, D., Naroditsky, O. Bergen, J.: Visual odometry. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659. Washington, DC, USA (2004)
Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control. Lett. 18(3), 165–171 (1992)
Garcia Carrillo, L.R., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad-rotor UAV using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the Mexican National Council for Science and Technology (CONACYT).
Rights and permissions
About this article
Cite this article
García Carrillo, L.R., Dzul López, A.E., Lozano, R. et al. Combining Stereo Vision and Inertial Navigation System for a Quad-Rotor UAV. J Intell Robot Syst 65, 373–387 (2012). https://doi.org/10.1007/s10846-011-9571-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-011-9571-7