[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Artificial bee colony algorithm for CONWIP production control system in a multi-product multi-machine manufacturing environment

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, a multi-product multi-machine serial production line operated under a constant-work-in-process protocol is considered. A mathematical model for the system is first presented, and then an artificial bee colony optimization algorithm is applied to simultaneously find the optimal work-in-process inventory level as well as job sequence order in order to minimize the overall makespan time. Unlike many existing approaches, which are based on deterministic search algorithms such as nonlinear programming and mixed integer programming, the proposed method does not use a linearized or simplified model of the system. A production line simulator implemented on MATLAB is, instead, employed to model the highly nonlinear dynamics of the production line and is used to evaluate the candidate solutions. The efficiency of the proposed approach, even for systems of large sizes, is validated via numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay, B., & Karaboga, D. (2010). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, Published online March 2010. doi:10.1007/s10845-010-0393-4.

  • Bonvik A. M., Couch C. E., Gershwin S. B. (1997) A comparison of production-line control mechanisms. International Journal of Production Research 25(3): 789–804

    Article  Google Scholar 

  • Cao D., Chen M. (2005) A mixed integer programming model for a two line CONWIP-based production and assembly system. International Journal of Production Economics 95(3): 317–326

    Article  Google Scholar 

  • Chang T. M., Yih Y. (1994) Generic Kanban systems for dynamic environments. International Journal of Production Research 32: 889–902

    Article  Google Scholar 

  • Framinan J. M., Gonzleza P. L., Ruiz-Usano R. (2003) The CONWIP production control system: Review and research issues. Production Planning and Control 14: 255–265

    Article  Google Scholar 

  • Framinan J. M., Gonzleza P. L., Ruiz-Usano R. (2006) Dynamic card controlling in a Conwip system. International Journal of Production Economics 99(1/2): 102–116

    Article  Google Scholar 

  • Garey M. R., Johnson D. S. (1979) Computers and interactability: A guide to the theory of NP-completeness. Freeman, San Francisco

    Google Scholar 

  • Gaury E. G. A., Pierreval H., Kleijnen J. P. C. (2000) An evolutionary approach to select a pull system among Kanban, Conwip and Hybrid. Journal of Intelligent Manufacturing 11: 157–167

    Article  Google Scholar 

  • Golany B., Dar-EL E. M., Zeev N. (1999) Controlling shop floor operations in a multi-family, multi-cell manufacturing environment through constant work-in-process. IIE Transactions 31: 771–781

    Google Scholar 

  • Goldratt E. M., Cox J. (1985) The goal. North River Press, Croton-on-Hudson, NY

    Google Scholar 

  • Gstettner S., Kuhn H. (1996) Analysis of production control systems Kanban and Conwip. International Journal of Production Research 34(11): 3253–3274

    Article  Google Scholar 

  • Herer Y. T., Masin M. (1997) Mathematical programming formulation of CONWIP-based production lines; and relationships to MRP. International Journal of Production Research 35(4): 1067–1076

    Article  Google Scholar 

  • Hopp W. J., Spearman M. L. (1991) Throughput of a constant work in process manufacturing line subject to failures. International Journal of Production Research 29(3): 635–655

    Article  Google Scholar 

  • Hopp W. J., Roof M. L. (1998) Setting WIP levels with statistical throughput control (STC) in CONWIP production lines. International Journal of Production Research 36(4): 867–882

    Article  Google Scholar 

  • Ip W. H., Huang M., Yung K. L., Wang D., Wang X. (2007) CONWIP based control of a lamp assembly production line. Journal of Intelligent Manufacturing 18(2): 261–271

    Article  Google Scholar 

  • Karaboga N. (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute 346: 328–348

    Article  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report TR06 , Kayseri, Turkey: Erciyes University.

  • Karaboga D., Basturk B. (2008) On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8: 687–697

    Article  Google Scholar 

  • Karaboga D., Akay B. (2009) A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214(1): 108–132

    Article  Google Scholar 

  • Khojasteh-Ghamari, Y. (2010). Developing a framework for performance analysis of a production process controlled by Kanban and CONWIP. Journal of Intelligent Manufacturing, Published online October 2009. doi:10.1007/s10845-009-0338-y.

  • Knolmayer G., Mertens P., Zeier A. (2002) Supply chain management based on SAP systems. Springer, Berlin

    Book  Google Scholar 

  • Kumar S. K., Tiwari M. K., Babiceanu R. F. (2010) Minimisation of supply chain cost with embedded risk using computational intelligence approaches. International Journal of Production Research 48(13): 3717–3739

    Article  Google Scholar 

  • Lambrecht M., Segaert A. (1990) Buffer stock allocation and assembly type production lines. International Journal of Operations and Production Management 10(2): 47–61

    Article  Google Scholar 

  • Li N., Zhang M. T., Deng S., Lee Z. H., Zhang L., Zheng L. (2007) Single-station performance evaluation and improvement in semiconductor manufacturing: A graphical approach. International Journal of Production Economics 107(2): 397–403

    Article  Google Scholar 

  • Luh P. B., Zhou X., Tomastik R. N. (2000) An effective method to reduce inventory in job shops. IEEE Transactions on Robotics and Automation 16: 420–424

    Article  Google Scholar 

  • Marek, R. P., Elkins, D. A., & Smith, D. R. (2001). Understanding the fundamentals of Kanban and CONWIP pull systems using simulation. In Proceedings of the 2001 winter simulation conference, Vol. 2, pp. 921–929.

  • Pan Q. K., Tasgetiren M. F., Suganthan P. N., Chua T. J. (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences 181(12): 2455–2468

    Article  Google Scholar 

  • Sato, R., & Khojasteh-Ghamari, Y. (2010). An integrated framework for card-based production control systems. Journal of Intelligent Manufacturing, Published online June 2010. doi:10.1007/s10845-010-0421-4.

  • Singh A. (2009) An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Applied Soft Computing 9(2): 625–631

    Article  Google Scholar 

  • Spearman M. L., Woodruff D. L., Hopp W. J. (1989) A hierarchical control architecture for constant work-in-process (CONWIP) production systems. Journal of Manufacturing and Operations Management 2: 147–171

    Google Scholar 

  • Spearman M. L., Woodruff D. L., Hopp W. J. (1990) Conwip: a pull alternative to Kanban. International Journal of Production Research 28: 879–894

    Article  Google Scholar 

  • Spearman M. L., Zazanis M. A. (1992) Push and Pull Production Systems: Issues and Comparison. Operations Research 40(3): 521–532

    Article  Google Scholar 

  • Sundar, S., & Singh, A. (2010). A hybrid heuristic for the set covering problem. Operational Research: An International Journal, Pub- lished online September 2010. doi:10.1007/s12351-010-0086-y.

  • Szeto W. Y., Wu Y., Ho S. C. (2011) An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research 215(1): 126–135

    Article  Google Scholar 

  • Yeh W. C., Hsieh T. J. (2011) Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Computers and Operations Research 38(11): 1465–1473

    Article  Google Scholar 

  • Zhang W., Chen M. (2001) A mathematical programming model for production planning using CONWIP. International Journal of Production Research 39(12): 2723–2734

    Article  Google Scholar 

  • Zhang C., Ouyang D., Ning J. (2010) An artificial bee colony approach for clustering. Expert Systems with Applications 37: 4761–4767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeede Ajorlou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajorlou, S., Shams, I. Artificial bee colony algorithm for CONWIP production control system in a multi-product multi-machine manufacturing environment. J Intell Manuf 24, 1145–1156 (2013). https://doi.org/10.1007/s10845-012-0646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-012-0646-5

Keywords

Navigation