Abstract
We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin–Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.
Similar content being viewed by others
References
Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3(Suppl), 1178–1283.
Arnold, L. (1974). Stochastic differential equations: Theory and applications. New York: J. Wiley and Sons.
Azouz, R. (2005). Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. Journal of Neurophysiology, 94, 2785–2796.
Badoual, M., Rudolph, M., Piwkowska, Z., Destexhe, A., & Bal, T. (2005). High discharge variability in neurons driven by current noise. Neurocomputing, 65, 493–498.
Bailey, J., & Hammerstrom, D. (1988). Why VLSI implementations of associative VLCNs require connection multiplexing. International Conference on Neural Networks (ICNN 88, IEEE) (pp. 173–180). San Diego.
Banitt, Y., Martin, K. A. C., & Segev, I. (2005). Depressed responses of facilitatory synapses. Journal of Neurophysiology, 94, 865–870.
Beeman, D. (2005). GENESIS Modeling Tutorial. Brains, Minds, and Media. 1: bmm220 (urn:nbn:de:0009-3-2206).
Bernard, C., Ge, Y. C., Stockley, E., Willis, J. B., & Wheal, H. V. (1994). Synaptic integration of NMDA and non-NMDA receptors in large neuronal network models solved by means of differential equations. Biological Cybernetics, 70(3), 267–73.
Bhalla, U., Bilitch, D., & Bower, J. M. (1992). Rallpacks: A set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.
Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.
Bhalla, U. S. (2004). Signaling in small subcellular volumes: II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal, 87, 745–753.
Blake, J. L., & Goodman, P. H. (2002). Speech perception simulated in a biologically-realistic model of auditory neocortex (abstract). Journal of Investigative Medicine, 50, 193S.
Bower, J. M. (1995). Reverse engineering the nervous system: An in vivo, in vitro, and in computo approach to understanding the mammalian olfactory system. In: S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An introduction to neural and electronic networks, second edn (pp. 3–28). New York: Academic Press.
Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the General Neural Simulation System, second edn. New York: Springer.
Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 18, 2004–2027.
Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural Computation (in press).
Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiolgy, 94, 3637–3642.
Brown, R. (1988). Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Journal of Communication ACM, 31(10), 1220–1227.
Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge: Cambridge University Press.
Carriero, N., & Gelernter, D. (1989). Linda in context. Communications of the ACM, 32, 444–458.
Claverol, E., Brown, A., & Chad, J. (2002). Discrete simulation of large aggregates of neurons. Neurocomputing, 47, 277–297.
Connollly, C., Marian, I., & Reilly, R. (2003). Approaches to efficient simulation with spiking neural networks. In WSPC.
Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to algorithms, second edn. Cambridge: MIT Press.
Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience. Brains, Minds and Media 1: bmm228 (urn:nbn:de:0009-3-2282).
Daley, D., & Vere-Jones, D. (1988). An introduction to the theory of point processes. New York: Springer.
Day, M., Carr, D. B., Ulrich, S., Ilijic, E., Tkatch, T., & Surmeier, D. J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and k(leak) channels. Journal of Neuroscience, 25, 8776–8787.
Delorme, A., & Thorpe, S. J. (2003). Spikenet: An event-driven simulation package for modelling large networks of spiking neurons. Network, 14(4), 613–627.
De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.
Destexhe, A., Mainen, Z., & Sejnowski, T. (1994a). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14–18.
Destexhe, A., Mainen, Z., & Sejnowski, T. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.
Destexhe, A., & Sejnowski, T. J. (2001). Thalamocortical assemblies. New York: Oxford University Press.
Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations. In T. Plesser & V. Macho (Eds.), Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, (pp. 43–70). Gottingen: Ges. fur Wiss. Datenverarbeitung.
Djurfeldt, M., Johansson, C., Ekeberg, Ö., Rehn, M., Lundqvist, M., & Lansner, A. (2005). Massively parallel simulation of brain-scale neuronal network models. Technical Report TRITA-NA-P0513. Stockholm: School of Computer Science and Communication.
Drewes, R., Maciokas, J. B., Louis, S. J., & Goodman, P. H. (2004). An evolutionary autonomous agent with visual cortex and recurrent spiking columnar neural network. Lecture Notes in Computer Science, 3102, 257–258.
Drewes, R. (2005). Modeling the brain with NCS and Brainlab. LINUX Journal online. http://www.linuxjournal.com/article/8038.
Ermentrout, B. (2004). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM.
Ermentrout, B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. Siam Journal on Applied Mathematics, 46, 233–253.
Ferscha, A. (1996). Parallel and distributed simulation of discrete event systems. In A. Y. Zomaya (Ed.), Parallel and Distributed Computing Handbook (pp. 1003–1041). New York: McGraw-Hill.
Fransén, E., & Lansner, A. (1998). A model of cortical associative memory based on a horizontal network of connected columns. Network: Computation in Neural Systems, 9, 235–264.
Froemke, R. C., & Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416, 433–438.
Fujimoto, R. M. (2000). Parallel and distributed simulation systems. New York: Wiley.
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., et al. (2001). Gnu scientific library: Reference manual. Bristol: Network Theory Limited.
Gara, A., Blumrich, M. A., Chen, D., Chiu, G. L.-T., Coteus, P., Giampapa, M. E., et al. (2005). Overview of the Blue Gene/L system architecture. IBM Journal of Reasearch and Development, 49, 195–212.
Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of hebbian learning. Biological Cybernetics, 87, 404–415.
Giugliano, M. (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with markov kinetic models in large network simulations. Neural Computation, 12, 903–931.
Giugliano, M., Bove, M., & Grattarola, M. (1999). Fast calculation of short-term depressing synaptic conductances. Neural Computation, 11, 1413–1426.
Goddard, N., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: Model description methods for collaborative modelling in neuroscience. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1209–1228.
Grill, W. M., Simmons, A. M., Cooper, S. E., Miocinovic, S., Montgomery, E. B., Baker, K. B., et al. (2005). Temporal excitation properties of parenthesias evoked by thalamic microstimulation. Clinical Neurophysiology, 116, 1227–1234.
Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science, 287, 273–278.
Gütig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input correlations through non-linear asymmetric hebbian plasticity. Journal of Neuroscience, 23, 3697–3714.
Gütig, R., & Sompolinsky, H. (2006). The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience, 9, 420–428.
Hammarlund, P., & Ekeberg, Ö. (1998). Large neural network simulations on multiple hardware platforms. Journal of Computational Neuroscience, 5, 443–459.
Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467–483.
Hereld, M., Stevens, R. L., Teller, J., & van Drongelen, W. (2005). Large neural simulations on large parallel computers. International Journal of Bioelectromagnetism, 7, 44–46.
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., et al. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31, 363–396.
Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Bio-Medical Computing, 15, 69–76.
Hines, M. (1989). A program for simulation of nerve equations with branching geometries. International Journal of Bio-Medical Computing, 24, 55–68.
Hines, M., & Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9, 1179–1209.
Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.
Hines, M. L., & Carnevale, N. T. (2001). NEURON: A tool for neuroscientists. The Neuroscientist, 7, 123–135.
Hines, M. L., & Carnevale, N. T. (2004). Discrete event simulation in the NEURON environment. Neurocomputing, 58–60, 1117–1122.
Hirsch, M., & Smale, S. (1974). Differential equations, dynamical systems, and linear algebra. Pure and applied mathematics. New York: Academic Press.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.
Honeycutt, R. L. (1992). Stochastic Runge–Kutta algorithms. I. White noise. Physical Review A, 45, 600–603.
Houweling, A. R., Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2005). Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cerebral Cortex, 15, 834–845.
Hugues, E., Guilleux, F., & Rochel, O. (2002). Contour detection by synchronization of integrate-and-fire neurons. Proceedings of the 2nd workshop on biologically motivated computer vision—BMCV 2002, TÃbingen, Germany. Lecture Notes in Computer Science, 2525, 60–69.
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.
Jahnke, A., Roth, U., & Schoenauer, T. (1998). Digital simulation of spiking neural networks. In W. Maass & C. M. Bishop (Eds.), Pulsed neural networks. Cambridge: MIT Press.
Johnston, D., & Wu, S. M.-S. (1995). Foundations of Cellular Neurophysiology. Cambridge: MIT Press.
Kanold, P. O., & Manis, P. B. (2005). Encoding the timing of inhibitory inputs. Journal of Neurophysiology, 93, 2887–2897.
Kellogg, M. M., Wills, H. R., & Goodman, P. H. (1999). Cumulative synaptic loss in aging and Alzheimer’s dementia: A biologically realistic computer model (abstract). Journal of Investigative Medicine, 47(17S).
Kernighan, B. W., & Pike, R. (1984). Appendix 2: Hoc manual. In The UNIX programming environment (pp. 329–333). Englewood Cliffs: Prentice-Hall.
Kohn, J., & Wörgötter, F. (1998). Employing the Z-transform to optimize the calculation of the synaptic conductance of NMDA and other synaptic channels in network simulations. Neural Computation, 10, 1639–1651.
Kozlov, A., Lansner, A., & Grillner, S. (2003). Burst dynamics under mixed nmda and ampa drive in the models of the lamprey spinal cpg. Neurocomputing, 52–54, 65–71.
Kozlov, A., Lansner, A., Grillner, S., & Kotaleski, J. H. (2007). A hemicord locomotor network of excitatory interneurons: A simulation study. Biological Cybernetics, 96, 229–243.
Laing, C. R. (2006). On the application of “equation-free” modelling to neural systems. Journal of Computational Neuroscience, 20, 5–23.
Lee, G., & Farhat, N. H. (2001). The double queue method: A numerical method for integrate-and-fire neuron networks. Neural Networks, 14, 921–932.
Lundqvist, M., Rehn, M., Djurfeldt, M., & Lansner, A. (2006). Attractor dynamics in a modular network model of neocortex. Network: Computation in Neural Systems, 17, 253–276.
Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–509.
Lytton, W. W. (2002). From computer to brain. New York: Springer-Verlag.
Lytton, W. W., & Hines, M. L. (2005). Independent variable time-step integration of individual neurons for network simulations. Neural Computation, 17, 903–921.
Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.
Macera-Rios, J. C., Goodman, P. H., Drewes, R, & Harris, F. C. Jr (2004). Remote-neocortex control of robotic search and threat identification. Robotics and Autonomous Systems, 46, 97–110.
Maciokas, J. B., Goodman, P. H., Kenyon, J. L., Toledo-Rodriquez, M., & Markram, H. (2005). Accurate dynamical model of interneuronal GABAergic channel physiologies. Neurocomputing, 65, 5–14.
Makino, T. (2003). A discrete-event neural network simulator for general neuron models. Neural Computing and Applications, 11, 210–223.
Marian, I., Reilly, R., & Mackey, D. (2002). Efficient event-driven simulation of spiking neural networks. In Proceedings of the 3rd WSEAS International Conference on Neural Networks and Applications.
Markram, H., Lubke, J., Frotscher, M., Roth, A., & Sakmann, B. (1997a). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. Journal of Physiology, 500, 409–440.
Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997b). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.
Markram, H., Dimitri, P., Gupta, A., & Tsodyks, M. (1998a). Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology, 37, 489–500.
Markram, H., Wang, Y., & Tsodyks, M. (1998b). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United Stated of America, 95, 5323–5328.
Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.
Markaki, M., Orphanoudakis, S., & Poirazi, P. (2005). Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Neurocomputing, 65, 305–314.
Mayrhofer, R., Affenzeller, M., Prähofer, H., Hfer, G., & Fried, A. (2002). Devs simulation of spiking neural networks. In Proceedings of Cybernetics and Systems (EMCSR), (Vol. 2, pp. 573–578). Austrian Society for Cybernetic Studies.
Migliore, M., Hines, M. L., & Shepherd, G. M. (2005). The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. Journal of Computational Neuroscience, 18, 151–161.
Migliore, M., Cannia, C., Lytton, W. W., Markram, H., & Hines, M. L. (2006). Parallel network simulations with NEURON. Journal of Computational Neuroscience, 21, 119–129.
Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116, 2240–2250.
Moore, J. W., & Stuart, A. E. (2000). Neurons in action: computer simulations with NeuroLab. Sunderland: Sinauer Associates.
Morrison, A., Aertsen, A., & Diesmann, M. (2007b). Spike-timing plasticity in balanced random networks. Neural Computation, 19, 47–49.
Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Computation, 17, 1776–1801.
Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007a). Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Computation, 19, 1437–1467.
Natschläger, T., Markram, H., & Maass, W. (2003). Computer models and analysis tools for neural microcircuits. In R. Kötter (Ed.), Neuroscience databases. A practical guide (pp. 123–138). Boston: Kluwer Academic Publishers.
Nenadic, Z., Ghosh, B. K., & Ulinski, P. (2003). Propagating waves in visual cortex: A large scale model of turtle visual cortex. Journal of Computational Neuroscience, 14, 161–184.
Olshausen, B. A., & Field, D. J. (2005). How close are we to understanding V1? Neural Computation, 17, 1665–1699.
Opitz, B. A., & Goodman, P. H. (2005). In silico knockin/knockout in model neocortex suggests role of Ca-dependent K+ channels in spike-timing information (abstract). Journal of Investigative Medicine, 53, 193S.
Prescott, S. A., & De Koninck, Y. (2005). Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. Journal of Neuroscience, 25, 4743–4754.
Press, W. H., Flannery B. P., Teukolsky S. A., & Vetterling W. T. (1993). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.
Reutimann, J., Giugliano, M., & Fusi, S. (2003). Event-driven simulation of spiking neurons with stochastic dynamics. Neural Computation, 15, 811–830.
Ripplinger, M. C., Wilson, C. J., King, J. G., Frye, J., Drewes, R., Harris, F. C., et al. (2004). Computational model of interacting brain networks (abstract). Journal of Investigative Medicine, 52, 155S.
Rochel, O., & Martinez, D. (2003). An event-driven framework for the simulation of networks of spiking neurons. In Proceedings of the 11th European Symposium on Artificial Neural Networks — ESANN’2003 (pp. 295–300). Bruges.
Rochel, O., & Vieville, T. (2006). One step towards an abstract view of computation in spiking neural networks (abstract). 10th International Conference on Cognitive and Neural Systems. Boston.
Rochel, O., & Cohen, N. (2007). Real time computation: Zooming in on population codes. Biosystems, 87, 260–266.
Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81, 381–402.
Rubin, J., Lee, D., & Sompolinsky, H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters, 86, 364–367.
Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Computation, 18, 2146–2210.
Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70, 1966–1969.
Saghatelyan, A., Roux, P., Migliore, M., Rochefort, C., Desmaisons, D., Charneau, P., et al. (2005). Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron, 46, 103–116.
Sanchez-Montanez, M. (2001). Strategies for the optimization of large scale networks of integrate and fire neurons. In J. Mira & A. Prieto (Eds.), IWANN, Volume 2084/2001 of Lecture Notes in Computer Science. New York: Springer-Verlag.
Sandström, M., Kotaleski, J. H., & Lansner, A. (2007). Scaling effects in the olfactory bulb. Neurocomputing, 70, 1802–1807.
Shelley, M. J., & Tao, L (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computatonal Neuroscience, 11, 111–119.
Sleator, D., & Tarjan, R. (1983). Self-adjusting binary trees. In Proceedings of the 15th ACM SIGACT Symposium on Theory of Computing (pp. 235–245).
Sloot, A., Kaandorp, J. A., Hoekstra, G., & Overeinder, B. J. (1999). Distributed simulation with cellular automata: Architecture and applications. In J. Pavelka, G. Tel, & M. Bartosek (Eds.), SOFSEM’99, LNCS (pp. 203–248). Berlin: Springer-Verlag.
Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32, 339–350.
Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.
Stricanne, B., & Bower, J. M. (1998). A network model of the somatosensory system cerebellum, exploring recovery from peripheral lesions at various developmental stages in rats (abstract). Society of Neuroscience Abstracts, 24, 669.
Traub, R. D., & Miles, R. (1991). Neuronal Networks of the Hippocampus. Cambridge UK: Cambridge University Press.
Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.
Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.
Tuckwell, H. (1988). Introduction to theoretical neurobiology, volume 1: Linear cable theory and dendritic structure. Cambridge: Cambridge University Press.
van Emde Boas, P., Kaas, R., & Zijlstra, E. (1976). Design and implementation of an efficient priority queue. Theory of Computing Systems, 10, 99–127.
Vitko, I., Chen, Y. C., Arias, J. M., Shen, Y., Wu, X. R., & Perez-Reyes, E. (2005). Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. Journal of Neuroscience, 25, 4844–4855.
Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.
Waikul, K. K., Jiang, L. J., Wilson, E. C., Harris, F. C. Jr, & Goodman, P. H. (2002). Design and implementation of a web portal for a NeoCortical Simulator. In Proceedings of the 17th International Conference on Computers and their Applications (CATA 2002) (pp. 349–353).
Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P.S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.
Watts, L. (1994). Event-driven simulation of networks of spiking neurons. Advances in neural information processing systems (pp. 927–934).
Wiebers, J. L., Goodman, P. H., & Markram, H. (2000). Blockade of A-type potassium channels recovers memory impairment caused by synaptic loss: Implications for Alzheimer’s dementia (abstract). Journal of Investigative Medicine, 48, 283S.
Wills, H. R., Kellogg, M. M., & Goodman, P. H. (1999). A biologically realistic computer model of neocortical associative learning for the study of aging and dementia (abstract). Journal of Investigative Medicine, 47, 11S.
Wilson, M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From synapses to networks (pp. 291–333). Cambridge: MIT Press.
Wohrer, A., Kornprobst, P., & Vieville, T. (2006). From light to spikes: A large-scale retina simulator. In Proceedings of the IJCNN 2006 (pp. 8995–9003). Vancouver, ISBN: 0-7803-9490-9.
Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnell, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations. Journal of Neuroscience, 25, 9080–9095.
Zeigler, B., Praehofer, H., & Kim, T. (2000). Theory of modeling and simulation, second edn. Integrating discrete event and continuous complex dynamic systems. New York: Academic Press.
Zeigler, B. P., & Vahie, S. (1993). DEVS formalism and methodology: Unity of conception/diversity of application. In Proceedings of the 1993 Winter Simulation Conference (pp. 573–579). Los Angeles, December 12–15.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Barry J. Richmond
Rights and permissions
About this article
Cite this article
Brette, R., Rudolph, M., Carnevale, T. et al. Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci 23, 349–398 (2007). https://doi.org/10.1007/s10827-007-0038-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-007-0038-6