[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Uncovering the effect of dominant attributes on community topology: A case of facebook networks

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Community structure points to structural patterns and reflects organizational or functional associations of networks. In real networks, each node usually contains multiple attributes representing the node’s characteristics. It is difficult to identify the dominant attributes, which have definitive effects on community formation. In this paper, we obtain the overlapping communities using game-theoretic clustering and focus on identifying the dominant attributes in terms of each community. We uncover the association of attributes to the community topology by defining dominance ratio and applying Pearson correlation. We test our method on Facebook data of 100 universities and colleges in the U.S. The study enables an integrating observation on how the offline lives infer online consequences. The results showed that people in class year 2010 and people studying in the same major tend to form denser and smaller groups on Facebook. Such information helps e-marketing campaigns target right customers based on demographic information and without the knowledge of underlying social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764.

    Article  Google Scholar 

  • Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.

    Article  Google Scholar 

  • Baumes, J., Goldberg, M. K., Krishnamoorthy, M. S., Magdon-Ismail, M., & Preston, N. (2005). Finding communities by clustering a graph into overlapping subgraphs. IADIS AC, 5, 97–104.

    Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    Article  Google Scholar 

  • Bonneau, J., Anderson, J., Anderson, R., & Stajano, F. (2009). Eight friends are enough: social graph approximation via public listings. In Proceedings of the Second ACM EuroSys Workshop on Social Network Systems (pp. 13–18). ACM.

  • Cavdur, F., & Kumara, S. (2014a). A network view of business systems. Information Systems Frontiers, 16(1), 153–162.

    Article  Google Scholar 

  • Cavdur, F., & Kumara, S. (2014b). Network mining: applications to business data. Information Systems Frontiers, 16(3), 473–490.

    Article  Google Scholar 

  • Chen, J., & Yuan, B. (2006). Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics, 22(18), 2283–2290.

    Article  Google Scholar 

  • Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111.

    Article  Google Scholar 

  • Constantinides, E., & Fountain, S. J. (2008). Web 2.0: conceptual foundations and marketing issues. Journal of Direct, Data and Digital Marketing Practice, 9(3), 231–244.

    Article  Google Scholar 

  • Eckmann, J. P., & Moses, E. (2002). Curvature of co-links uncovers hidden thematic layers in the world wide web. Proceedings of the National Academy of Sciences, 99(9), 5825–5829.

    Article  Google Scholar 

  • Evans, T. S., & Lambiotte, R. (2009). Line graphs, link partitions, and overlapping communities. Physical Review E, 80(1), 016105.

    Article  Google Scholar 

  • Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. M. (2002). Self-organization and identification of web communities. Computer, 35(3), 66–70.

    Article  Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.

    Article  Google Scholar 

  • Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New Journal of Physics, 12(10), 103018.

    Article  Google Scholar 

  • Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.

    Article  Google Scholar 

  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 100–108.

  • Lancichinetti, A., Fortunato, S., & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015.

    Article  Google Scholar 

  • Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.

    Article  Google Scholar 

  • Luce, R. D. (1950). Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 169–190.

    Article  Google Scholar 

  • Mandala, S., Kumara, S., & Chatterjee, K. (2014). A Game-Theoretic Approach to Graph Clustering. INFORMS Journal on Computing.

  • Matsuda, H., Ishihara, T., & Hashimoto, A. (1999). Classifying molecular sequences using a linkage graph with their pairwise similarities. Theoretical Computer Science, 210(2), 305–325.

    Article  Google Scholar 

  • Mislove, A., Viswanath, B., Gummadi, K. P., & Druschel, P. (2010). You are who you know: inferring user profiles in online social networks. In Proceedings of the third ACM international conference on Web search and data mining (pp. 251–260). ACM.

  • Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  Google Scholar 

  • Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.

    Article  Google Scholar 

  • Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–8.

    Article  Google Scholar 

  • Papadopoulos, S., Kompatsiaris, Y., Vakali, A., & Spyridonos, P. (2012). Community detection in social media. Data Mining and Knowledge Discovery, 24(3), 515–554.

    Article  Google Scholar 

  • Porter, M. A. (2011). Facebook 100 Data Set in Quantum Chaotic Thoughts. Retrieved from http://masonporter.blogspot.com/2011/02/facebook100-data-set.html. Accessed May 2011.

  • Pujol, J. M., Erramilli, V., & Rodriguez, P. (2009). Divide and conquer: Partitioning online social networks. arXiv preprint arXiv:0905.4918.

  • Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.

    Article  Google Scholar 

  • Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518–1524.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2007). An information-theoretic framework for resolving community structure in complex networks. Proceedings of the National Academy of Sciences, 104(18), 7327–7331.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123.

    Article  Google Scholar 

  • Sarmanov, O. V. (1962). Maximum correlation coefficient (nonsymmetric case). Selected Translations in Mathematical Statistics and Probability, 2, 207–210.

    Google Scholar 

  • Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.

    Article  Google Scholar 

  • Traud, A. L., Kelsic, E. D., Mucha, P. J., & Porter, M. A. (2011). Comparing community structure to characteristics in online collegiate social networks. SIAM Review, 53(3), 526–543.

    Article  Google Scholar 

  • Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165–4180.

    Article  Google Scholar 

  • Trusov, M., Bucklin, R. E., & Pauwels, K. (2009). Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site. Journal of Marketing, 73(5), 90–102.

    Article  Google Scholar 

  • Wei, F., Qian, W., Wang, C., & Zhou, A. (2009). Detecting overlapping community structures in networks. World Wide Web, 12(2), 235–261.

    Article  Google Scholar 

  • Xie, J., Szymanski, B. K., & Liu, X. (2011). Slpa: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In Data Mining Workshops (ICDMW), 2011 I.E. 11th International Conference on (pp. 344–349). IEEE.

  • Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. (2007). Scan: a structural clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 824–833). ACM.

  • Zhang, S., Wang, R. S., & Zhang, X. S. (2007). Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications, 374(1), 483–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soundar Kumara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, YS., Wang, D. & Kumara, S. Uncovering the effect of dominant attributes on community topology: A case of facebook networks. Inf Syst Front 20, 1041–1052 (2018). https://doi.org/10.1007/s10796-016-9696-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-016-9696-0

Keywords

Navigation