[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A local branching matheuristic for the multi-vehicle routing problem with stochastic demands

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

This paper proposes a local branching matheuristic for the vehicle routing problem with stochastic demands (VRPSD). The problem is cast in a two-stage stochastic programming model, in which routes are planned in the first stage and executed in the second stage. In this setting, a failure may occur if a vehicle does not have sufficient capacity to serve the realized demand of a customer, which is revealed only upon arrival at a customer’s location. In the event of a failure, a recourse action is performed by having the vehicle return to the depot to replenish its capacity and resume its planned route at the point of failure. Thus, the objective of the VRPSD is to minimize the sum of the planned routes cost and of the expected recourse cost. We propose a local branching matheuristic to solve the multi-VRPSD. We introduce an intensification procedure applied at each node of the local branching tree. This procedure is embedded in a multi-descent scheme for which we propose a diversification strategy. Extensive computational results demonstrate the effectiveness of our matheuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ak, A., Erera, A.: A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands. Transp. Sci. 41, 222–237 (2007)

    Article  Google Scholar 

  • Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas, D.J.: Probabilistic combinatorial optimization problems. PhD thesis, Operations Research Center, Massachusetts Institute of Technology (1988)

  • Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40, 574–585 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A priori optimization. Oper. Res. 38, 1019–1033 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J. Math. Model. Algorithms 5, 91–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepuri, K., Homem de Mello, T.: Solving the vehicle routing problem with stochastic demands using the cross entropy method. Ann. Oper. Res. 134, 153–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Christiansen, C.H., Lysgaard, J.: A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. Lett. 35, 773–781 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

    Article  MATH  Google Scholar 

  • Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gauvin, C., Gendreau, M., Desaulniers, G.: A branch-cut-and-price algorithm for the vehicle routing problem with stochastic demands. Comput. Oper. Res. 50, 141–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transp. Sci. 29, 143–155 (1995)

    Article  MATH  Google Scholar 

  • Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Oper. Res. 44, 469–477 (1996)

    Article  MATH  Google Scholar 

  • Gendreau, M., Jabali, O., Rei, W.: Stochastic vehicle routing problems. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, MOS-SIAM series on Optimization, pp. 213–240. SIAM, Philadelphia (2014)

    Chapter  Google Scholar 

  • Gendreau, M., Jabali, O., Rei, W.: Future research directions in stochastic vehicle routing. Transp. Sci. 50(4), 1163–1173 (2016)

    Article  Google Scholar 

  • Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Goodson, J.C., Ohlmann, J.W., Thomas, B.W.: Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. Eur. J. Oper. Res. 217, 312–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hjorring, C., Holt, J.: New optimality cuts for a single-vehicle stochastic routing problem. Ann. Oper. Res. 86, 569–584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jabali, O., Rei, W., Gendreau, M., Laporte, G.: Partial-route inequalities for the multi-vehicle routing problem with stochastic demands. Discrete Appl. Math. 177, 121–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaillet, P.: A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36, 929–936 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Lambert, V., Laporte, G., Louveaux, F.V.: Designing collection routes through bank branches. Comput. Oper. Res. 20, 783–791 (1993)

    Article  Google Scholar 

  • Laporte, G., Louveaux, F.V.: The integer \(L\)-shaped method for stochastic integer programs with complete recourse. Oper. Res. Lett. 13, 133–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Laporte, G., Louveaux, F.V., Van Hamme, L.: An integer \(L\)-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50, 415–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, H., Laporte, G., Guo, B.: The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38, 1775–1783 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Leuliet, A.: Nouvelles coupes pour le problème de tournées de véhicule avec demandes stochastiques. Master’s thesis, École Polytechnique de Montréal (2014)

  • Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. 100(2), 423–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mendoza, J.E., Rousseau, L.M., Villegas, J.G.: A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints. J. Heuristics 22, 1–28 (2015)

    Google Scholar 

  • Mendoza, J.E., Villegas, J.G.: A multi-space sampling heuristic for the vehicle routing problem with stochastic demands. Optim. Lett. 7, 1503–1516 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Rei, W., Gendreau, M., Soriano, P.: A hybrid Monte Carlo local branching algorithm for the single vehicle routing problem with stochastic demands. Transp. Sci. 44(1), 136–146 (2010)

    Article  Google Scholar 

  • Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing problem with stochastic demands. Oper. Res. 57, 214–230 (2009)

    Article  MATH  Google Scholar 

  • Toth, P., Vigo, D. (eds.): Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM series on Optimization. SIAM, Philadelphia (2014)

    Google Scholar 

  • Van Slyke, R.M., Wets, R.J.-B.: \(L\)-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, W.-H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transp. Sci. 34, 99–112 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding provided by the Canadian Natural Sciences and Engineering Research Council. The authors thank the two anonymous referees for their insightful comments and suggestions that helped improve the content and the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Jabali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, F., Gendreau, M., Jabali, O. et al. A local branching matheuristic for the multi-vehicle routing problem with stochastic demands. J Heuristics 25, 215–245 (2019). https://doi.org/10.1007/s10732-018-9392-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-018-9392-y

Keywords

Navigation