Abstract
A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator.
Similar content being viewed by others
References
Ceruti, G., Lubich, C.: An unconventional robust integrator for dynamical low-rank approximation. BIT Numer. Math. (2021)
Ceruti, G., Kusch, J., Lubich, C.: Numerical testcases for “A rank-adaptive robust integrator for dynamical low-rank approximation” https://github.com/JonasKu/publication-A-rank-adaptive-robust-integrator-for-dynamical-low-rank-approximation.git (2021)
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-$(R_1, R_2,\ldots, R_N)$ approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)
Dektor, A., Rodgers, A., Venturi, D.: Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv:2012.05962 (2020)
Després, B., Poëtte, G., Lucor, D.: Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In: Uncertainty Quantification in Computational Fluid Dynamics, pp. 105–149. Springer (2013)
Einkemmer, L., Joseph, I.: A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov equation. arXiv:2101.12571 (2021)
Einkemmer, L., Lubich, C.: A low-rank projector-splitting integrator for the Vlasov–Poisson equation. SIAM J. Sci. Comput. 40(5), B1330–B1360 (2018)
Einkemmer, L., Hu, J., Ying, L.: An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to the compressible viscous flow regime. arXiv:2101.07104 (2021)
Feppon, F., Lermusiaux, P.F.: Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport. SIAM Rev. 60(3), 595–625 (2018)
Ganapol, B.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Los Alamos National Laboratory (1999)
Ganapol, B.D.: Analytical benchmarks for nuclear engineering applications. Case Stud. Neutron Transp. Theory (2008)
Garrett, C.K., Hauck, C.D.: A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42(6–7), 203–235 (2013)
Haegeman, J., Cirac, J.I., Osborne, T.J., Pižorn, I., Verschelde, H., Verstraete, F.: Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107(7), 070601 (2011)
Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B., Verstraete, F.: Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94(16), 165116 (2016)
Hairer, E., Lubich, C.: Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34(2), 452–461 (2014)
Kieri, E., Lubich, C., Walach, H.: Discretized dynamical low-rank approximation in the presence of small singular values. SIAM J. Numer. Anal. 54(2), 1020–1038 (2016)
Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454 (2007)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Kusch, J., Alldredge, G.W., Frank, M.: Maximum-principle-satisfying second-order intrusive polynomial moment scheme. SMAI J. Comput. Math. 5, 23–51 (2019)
Kusch, J., Ceruti, G., Einkemmer, L., Frank, M.: Dynamical low-rank approximation for Burgers’ equation with uncertainty. arXiv:2105.04358 (2021)
Lubich, C., Oseledets, I.V.: A projector-splitting integrator for dynamical low-rank approximation. BIT 54(1), 171–188 (2014)
Lubich, C., Oseledets, I.V., Vandereycken, B.: Time integration of tensor trains. SIAM J. Numer. Anal. 53(2), 917–941 (2015)
Meyer, H.-D., Manthe, U., Cederbaum, L.S.: The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165(1), 73–78 (1990)
Meyer, H.-D., Gatti, F., Worth, G.A.: Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley, London (2009)
Musharbash, E., Nobile, F.: Dual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditions. J. Comput. Phys. 354, 135–162 (2018)
Musharbash, E., Nobile, F., Vidličková, E.: Symplectic dynamical low rank approximation of wave equations with random parameters. BIT Numer. Math. 60, 1153–1201 (2020)
Peng, Z., McClarren, R.G.: A high-order/low-order (HOLO) algorithm for preserving conservation in time-dependent low-rank transport calculations. J. Comput. Phys. 447, 110672 (2021)
Peng, Z., McClarren, R.G., Frank, M.: A low-rank method for two-dimensional time-dependent radiation transport calculations. J. Comput. Phys. 421, 109735 (2020)
Poëtte, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228(7), 2443–2467 (2009)
Sapsis, T.P., Lermusiaux, P.F.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238(23–24), 2347–2360 (2009)
Schrammer, S.: Doctoral thesis in preparation. KIT (2021)
Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)
Yang, M., White, S.R.: Time-dependent variational principle with ancillary Krylov subspace. Phys. Rev. B 102(9), 094315 (2020)
Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 258734477—SFB 1173. It started out from a discussion at the 2021 annual meeting of SFB 1173 that included Marlis Hochbruck and Stefan Schrammer. We thank Martin Frank for fruitful discussions on radiation transport theory.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Antonella Zanna Munthe-Kaas.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ceruti, G., Kusch, J. & Lubich, C. A rank-adaptive robust integrator for dynamical low-rank approximation. Bit Numer Math 62, 1149–1174 (2022). https://doi.org/10.1007/s10543-021-00907-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-021-00907-7
Keywords
- Dynamical low-rank approximation
- Rank adaptivity
- Structure-preserving integrator
- Matrix and tensor differential equations