[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

EFTNet: an efficient fine-tuning method for few-shot segmentation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Few-shot segmentation (FSS) aims to segment novel classes given a small number of labeled samples. Most of the existing studies do not fine-tune the model during meta-testing, thus biasing the model towards the base classes and preventing the prediction of novel classes. Other studies only use support images for fine-tuning, which biases the model towards the support images rather than the target query images, especially when there is a large difference between the support and the query images. To alleviate these issues, we propose an \(\underline{{\textbf {e}}}\)fficient \(\underline{{\textbf {f}}}\)ine-\(\underline{{\textbf {t}}}\)uning network (EFTNet) that uses unlabeled query images and predicted pseudo labels to fine-tune the trained model parameters during meta-testing, which can bias the model towards the target query images. In addition, we design a query-to-support module, a support-to-query module, and a discrimination module to evaluate which fine-tuning round the model achieves optimal results. Moreover, the query-to-support module also takes the query images and their pseudo masks as part of the support images and support masks, which causes the prototypes to contain query information and tend to obtain better predictions. As a new meta-testing scheme, our EFTNet can be easily combined with existing studies and greatly improve their model performance without repeating the meta-training phase. Many experiments on PASCAL-\(5^i\) and COCO-\(20^i\) prove the effectiveness of our EFTNet. The EFTNet also achieves new state-of-the-art performance. Codes are available at https://github.com/Jiaguang-NEU/EFTNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability and Access

Two datasets are used: PASCAL-\(5^i\) (access: http://host.robots.ox.ac.uk/pascal/VOC/) and COCO-\(20^i\) (access: http://cocodataset.org/).

References

  1. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  2. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Article  Google Scholar 

  3. Huang Z et al (2023) CCNet: criss-cross attention for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 45(6):6896–6908

    Article  Google Scholar 

  4. Ren W, Zhang J, Xu X, Ma L, Cao X, Meng G, Liu W (2019) Deep video dehazing with semantic segmentation. IEEE Trans Image Process 28(4):1895–1908

    Article  MathSciNet  Google Scholar 

  5. Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) Imagenet: a large-scale hierarchical image database. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog. pp 248–255

  6. Mittal S, Tatarchenko M, Brox T (2021) Semi-supervised semantic segmentation with high- and low-level consistency. IEEE Trans Pattern Anal Mach Intell 43(4):1369–1379

    Article  Google Scholar 

  7. Castillo-Navarro J, Le Saux B, Boulch A et al (2022) Semi-supervised semantic segmentation in Earth observation: the MiniFrance suite, dataset analysis and multi-task network study. Mach Learn 111:3125–3160

    Article  MathSciNet  Google Scholar 

  8. Cao X, Chen H, Li Y, Peng Y, Wang S, Cheng L (2021) Uncertainty aware temporal-ensembling model for semi-supervised ABUS mass segmentation. IEEE Trans Med Imaging 40(1):431–443

    Article  Google Scholar 

  9. Chaitanya K, Karani N, Baumgartner CF, Erdil E, Becker A, Donati O, Konukoglu E (2021) Semi-supervised task-driven data augmentation for medical image segmentation. Med Image Anal 68

  10. Li Z, Liu M, Chen Y, Xu Y, Li W, Du Q (2022) Deep cross-domain few-shot learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–18

    Google Scholar 

  11. Bi S, Wang YX, Li XX, Dong M, Zhu JH (2021) Critical direction projection networks for few-shot learning. Appl Intell 52(5):5400–5413

    Article  Google Scholar 

  12. Jiang W, Huang K, Geng J, Deng X (2021) Multi-scale metric learning for few-shot learning. IEEE Trans Circuits Syst Video Technol 31(3):1091–1102

    Article  Google Scholar 

  13. Zheng Z, Feng X, Yu H, Li X, Gao M (2022) BDLA: bi-directional local alignment for few-shot learning. Appl Intell 53(1):769–785

    Article  Google Scholar 

  14. Wang B, Li L, Verma M, Nakashima Y, Kawasaki R, Nagahara H (2022) Match them up: visually explainable few-shot image classification. Appl Intell

  15. Yan L, Li F, Zhang L, Zheng X (2023) Discriminant space metric network for few-shot image classification. Appl Intell

  16. Liu S, Shi Q, Zhang L (2021) Few-shot hyperspectral image classification with unknown classes using multitask deep learning. IEEE Trans Geosci Remote Sensing 59(6):5085–5102

    Article  Google Scholar 

  17. Zhou X, Liang W, Shimizu S, Ma J, Jin Q (2021) Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Trans Ind Inform 17(8):5790–5798

    Article  Google Scholar 

  18. Liu B, Jiao J, Ye Q (2021) Harmonic feature activation for few-shot semantic segmentation. IEEE Trans Image Process 30:3142–3153

    Article  Google Scholar 

  19. Wang K, Liew JH, Zou Y, Zhou D, Feng J (2019) PANet: few-shot image semantic segmentation with prototype alignment. In: Proc. Int. Conf. Comput. Vis. pp 9197–9206

  20. Iqbal E, Safarov S, Bang S (2022) MSANet: multi-similarity and attention guidance for boosting few-shot segmentation. arXiv:2206.09667v1. https://arxiv.org/pdf/2206.09667

  21. Zhang S, Wu T, Wu S, Guo G (2022) CATrans: context and affinity transformer for few-shot segmentation. In: Proc Int Joint Conf Artif Intell

  22. Lang C, Cheng G, Tu B, Han J (2022) Learning what not to segment: a new perspective on few-shot segmentation. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 8057–8067

  23. Liu Y, Liu N, Cao Q, Yao X, Han J, Shao L (2022) Learning non-target knowledge for few-shot semantic segmentation. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 11573–11582

  24. Tian Z, Zhao H, Shu M, Yang Z, Li R, Jia J (2022) Prior guided feature enrichment network for few-shot segmentation. IEEE Trans Pattern Anal Mach Intell 44(2):1050–1065

    Article  Google Scholar 

  25. Zheng Z, Huang G, Yuan X, Pun C, Liu H, Ling W (2023) Quaternion-valued correlation learning for few-shot semantic segmentation. IEEE Trans Circuits Syst Video Technol 33(5):2102–2115

    Article  Google Scholar 

  26. Chang Z, Lu Y, Ran X et al (2023) Simple yet effective joint guidance learning for few-shot semantic segmentation. Appl Intell 53:26603–26621

    Article  Google Scholar 

  27. Lang C, Tu B, Cheng G, Han J (2022) Beyond the Prototype: divide-and-conquer proxies for few-shot segmentation. In: Proc Int Joint Conf Artif Intell

  28. Gao G, Fang Z, Han C, Wei Y, Liu CH, Yan S (2022) DRNet: double recalibration network for few-shot semantic segmentation. Trans Image Process 31:6733–6746

    Article  Google Scholar 

  29. Li G, Jampani V, Sevilla-Lara L, Sun D, Kim J, Kim J (2021) Adaptive prototype learning and allocation for few-shot segmentation. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 8334–8343

  30. Liu B, Ding Y, Jiao J, Ji X, Ye Q (2021) Anti-aliasing semantic reconstruction for few-shot semantic segmentation. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 9747–9756

  31. Lu Z, He S, Zhu X, Zhang L, Song Y-Z, Xiang T (2021) Simpler is better: few-shot semantic segmentation with classifier weight transformer. In: Proc Int Conf Comput Vis. pp 8741–8750

  32. Nguyen K, Todorovic S (2019) Feature weighting and boosting for few-shot segmentation. In: Proc Int Conf Comput Vis. pp 622–631

  33. Qi F, Wenjie P, Yu-Wing T, Chi-Keung T, (2022) Self-support few-shot semantic segmentation. In: Proc Eur Conf Comput Vis

  34. Shaban A, Bansal S, Liu Z, Essa I, Boots B (2017) One-shot learning for semantic segmentation. arXiv:1709.03410. https://arxiv.org/abs/1709.03410

  35. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proc Int Conf Med Image Comput Comput-Assisted Intervention vol 9351. pp 234–241

  36. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  37. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 2881–2890

  38. O. Vinyals, C Blundell, T Lillicrap, K Kavukcuoglu, and D Wierstra, “Matching Networks for One Shot Learning,” in Proc. Adv. Neural Inform. Process. Syst., 2016, pp 3630–3638

  39. Li D, Zhang J, Yang Y, Liu C, Song Y-Z, Hospedales T (2019) Episodic training for domain generalization. In: Proc Int Conf Comput Vis. pp 1446–1455

  40. Xiao G, Tian S, Yu L, Zhou Z, Zeng X (2023) Siamese few-shot network: a novel and efficient network for medical image segmentation. Appl Intell

  41. Sung F, Yang Y, Zhang L, Xiang T, Torr PH, Hospedales TM (2018) Learning to compare: relation network for few-shot learning. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 1199–1208

  42. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proc Int Conf Mach Learn. pp 1126–1135

  43. Jamal MA, Qi G-J (2019) Task agnostic meta-learning for few-shot learning. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 11719–11727

  44. Chen Z, Fu Y, Chen K, Jiang Y-G (2019) Image block augmentation for one-shot learning. In: Proc AAAI Conf Artif Intell vol 33. pp 3379–3386

  45. Chen Z, Fu Y, Wang Y-X, Ma L, Liu W, Hebert M (2019) Image deformation meta-networks for one-shot learning. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 8680–8689

  46. Koch G, Zemel R, Salakhutdinov R (2015) Siamese neural networks for one-shot image recognition. In: Proc Int Conf Mach Learn

  47. Shaban A, Bansal S, Liu Z, Essa I, Boots B (2017) One-shot learning for semantic segmentation. In: Proc Brit Mach Vis Conf

  48. Zhang X, Wei Y, Yang Y, Huang TS (2018) Sg-one:similarity guidance network for one-shot semantic segmentation. arXiv:1810.09091

  49. Liu W, Zhang C, Lin G, Liu F (2020) Crnet: cross-reference networks for few-shot segmentation. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 4165–4173

  50. Everingham M, Gool LV, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  51. Hariharan B, Arbeláez P, Bourdev L, Maji S, Malik J (2011) Semantic contours from inverse detectors. In Proc Int Conf Comput Vis. pp 991–998

  52. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Proc Eur Conf Comput Vis. pp 740–755

  53. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  54. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proc IEEE Conf Comput Vis Pattern Recog. pp 770–778

  55. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. In: Proc Adv Neural Inf Process Syst. pp 8024–8035

  56. Min J, Kang D, Cho M (2021) Hypercorrelation squeeze for few-shot segmentation. In: Proc Int Conf Comput Vis. pp 6941–6952

  57. Snell J, Swersky K, Zemel R (2022) Dense cross-query-and-support attention weighted mask aggregation for few-shot segmentation. In: Proc Eur Conf Comput Vis. pp 151–168

  58. Shi1 X, Wei D, Zhang Y, Lu D, Ning M, Chen J, Ma K, Zheng Y (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis vol 128. pp 336–359

  59. Aggarwal AK, Jaidka P (2022) Segmentation of crop images for crop yield prediction. Int J Biol Biomed 7

  60. Xiao J et al (2023) Enhancing assessment of corn growth performance using unmanned aerial vehicles (UAVs) and deep learning. Meas 214

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (grant No.61871106 and No.61370152), Key R &D projects of Liaoning Province, China (grant No. 2020JH2/10100029), and the Open Project Program Foundation of the Key Laboratory of Opto-Electronics Information Processing, Chinese Academy of Sciences (OEIP-O-202002).

Author information

Authors and Affiliations

Authors

Contributions

Jiaguang Li: Methodology, Writing, and Experimental Design. Yubo Wang: Programming, Experimental Implementation. Zihan Gao: Programming, Experimental Implementation. Ying Wei: Investigation, Supervision, Validation.

Corresponding author

Correspondence to Ying Wei.

Ethics declarations

Conflict of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical and Informed Consent for Data Used

The authors declare that the data used in this work are ethical and that they provided informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y., Gao, Z. et al. EFTNet: an efficient fine-tuning method for few-shot segmentation. Appl Intell 54, 9488–9507 (2024). https://doi.org/10.1007/s10489-024-05582-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05582-z

Keywords

Navigation