[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Scheduling is one of the problems that has attracted the attention of many researchers over the years. The University Course Timetabling Problem (UCTP) is a highly constrained real-world combinatorial optimization task. Designing course timetables for academic institutions has always been challenging, because it is a non-deterministic polynomial-time hardness (NP-hard) problem. This problem attempts to assign specific timeslots and rooms to the events considering a number of hard and soft constraints. All hard constraints must be satisfied to achieve a feasible solution, whereas satisfying all soft constraints is not necessary. Although the quality of the solution is directly related to the number of soft constraints that are satisfied. One of the recent innovative methodologies for solving UCTP is the hybrid algorithm, which attempts to automate the timetabling design process so that it would be able to work with different instances of problem domains. In this paper, we present a hybrid method based on the Improved Parallel Genetic Algorithm and Local Search (IPGALS) to solve the course timetabling problem. The Local Search (LS) approach is used to strengthen the Genetic Algorithm (GA). The IPGALS has applied a representation of the timetable, which ensure the hard constraints would never be violated. Hard constraints are measured by Distance to Feasibility (DF) criterion. In fact, applying the DF criterion leads to achieving feasible solutions and promotes the performance of our algorithm. Due to the wide range of problem constraints, the proposed algorithm is performed in parallel to improve the GA searching process. The IPGALS algorithm is tested over BenPaechter and ITC-2007 standard benchmarks and compared with the state-of-the-art techniques in this literature. The experimental results confirm the effectiveness and the superiority of the proposed algorithm compared to other prominent methods for solving UCTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hambali AM, Olasupo YA, Dalhatu M (2020) Automated university lecture timetable using heuristic approach. Niger J Technol 39(1):1–14. https://doi.org/10.4314/njt.v39i1.1

    Article  Google Scholar 

  2. Abuhamdah A, Ayob M, Kendall G, Sabar NR (2014) Population based local search for university course timetabling problems. Appl Intell 40(1):44–53. https://doi.org/10.1007/s10489-013-0444-6

    Article  Google Scholar 

  3. Thepphakorn T, Pongcharoen P (2019) Variants and parameters investigations of particle swarm optimisation for solving course timetabling problems. In: International conference on swarm intelligence. Springer, Cham, pp 177–187. https://doi.org/10.1007/978-3-030-26369-0_17

  4. Bashab A, Ibrahim AO, AbedElgabar EE, Ismail MA, Elsafi A, Ahmed A, Abraham A (2020) A systematic mapping study on solving university timetabling problems using meta-heuristic algorithms. Neural Comput & Applic 32(11):1–36. https://doi.org/10.1007/s00521-020-05110-3

    Article  Google Scholar 

  5. Pintér M, Dávid B (2019) A two-stage heuristic for the university course timetabling problem. In: Proceedings of the 2019 6th student computer science research conference-StuCoSReC. Univerza na Primorskem, Inštitut Andrej Marušič, pp 27–30. https://doi.org/10.26493/978-961-7055-82-5.27-30

  6. Akkan C, Gülcü A (2018) A bi-criteria hybrid genetic algorithm with robustness objective for the course timetabling problem. Comput Oper Res 90:22–32. https://doi.org/10.1016/j.cor.2017.09.007

    Article  MathSciNet  MATH  Google Scholar 

  7. Kostuch P (2003) Timetabling competition-SA-based heuristic. International Timetabling Competition. http://www.idsia.ch/ttcomp2002/docs

  8. Pillay N (2014) A survey of school timetabling research. Ann Oper Res 218(1):261–293. https://doi.org/10.1007/s10479-013-1321-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Saviniec L, Santos MO, Costa AM (2018) Parallel local search algorithms for high school timetabling problems. Eur J Oper Res 265(1):81–98. https://doi.org/10.1016/j.ejor.2017.07.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Rezaeipanah A, Abshirini Z, Zade MB (2019) Solving University course timetabling problem using parallel genetic algorithm. International Journal of Scientific Research in Computer Science and Engineering 7(5):5–13

    Google Scholar 

  11. Fajrin AM, Fatichah C (2020) Multi-parent order crossover mechanism of genetic algorithm for minimizing violation of soft constraint on course timetabling problem. Register: Jurnal Ilmiah Teknologi Sistem Informasi 6(1):43–51. https://doi.org/10.26594/register.v6i1.1663

    Article  Google Scholar 

  12. Soghier A, Qu R (2013) Adaptive selection of heuristics for assigning time slots and rooms in exam timetables. Appl Intell 39(2):438–450. https://doi.org/10.1007/s10489-013-0422-z

    Article  Google Scholar 

  13. Mansour N, Isahakian V, Ghalayini I (2011) Scatter search technique for exam timetabling. Appl Intell 34(2):299–310. https://doi.org/10.1007/s10489-009-0196-5

    Article  Google Scholar 

  14. Assi M, Halawi B, Haraty RA (2018) Genetic algorithm analysis using the graph coloring method for solving the university timetable problem. Procedia Computer Science 126:899–906. https://doi.org/10.1016/j.procs.2018.08.024

    Article  Google Scholar 

  15. Babaei H, Karimpour J, Hadidi A (2018) Applying hybrid fuzzy multi-criteria decision-making approach to find the best ranking for the soft constraint weights of lecturers in UCTP. International Journal of Fuzzy Systems 20(1):62–77. https://doi.org/10.1007/s40815-017-0296-z

    Article  MathSciNet  Google Scholar 

  16. June TL, Obit JH, Leau YB, Bolongkikit J, Alfred R (2020) Sequential constructive algorithm incorporate with fuzzy logic for solving real world course timetabling problem. In: Computational science and technology. Springer, Singapore, pp 257–267. https://doi.org/10.1007/978-981-15-0058-9_25

  17. Phillips AE, Walker CG, Ehrgott M, Ryan DM (2017) Integer programming for minimal perturbation problems in university course timetabling. Ann Oper Res 252(2):283–304. https://doi.org/10.1007/s10479-015-2094-z

    Article  MathSciNet  MATH  Google Scholar 

  18. AlHadid I, Kaabneh K, Tarawneh H (2018) Hybrid simulated annealing with meta-heuristic methods to solve UCT problem. Mod Appl Sci 12(11):366–375. https://doi.org/10.5539/mas.v12n11p366

    Article  Google Scholar 

  19. Abdullah S, Burke EK, McCollum B (2007) A hybrid evolutionary approach to the university course timetabling problem. In: 2007 IEEE congress on evolutionary computation, pp 1764–1768. https://doi.org/10.1109/CEC.2007.4424686

  20. Yang S, Jat SN (2010) Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Trans Syst Man Cybern Part C Appl Rev 41(1):93–106. https://doi.org/10.1109/TSMCC.2010.2049200

    Article  Google Scholar 

  21. Landa-Silva D, Obit JH (2009) Evolutionary non-linear great deluge for university course timetabling. In: International conference on hybrid artificial intelligence systems. Springer, Berlin, pp 269–276. https://doi.org/10.1007/978-3-642-02319-4_32

  22. Turabieh H, Abdullah S, Mccollum B (2009) Electromagnetism-like mechanism with force decay rate great deluge for the course timetabling problem. In: International conference on rough sets and knowledge technology. Springer, Berlin, pp 497–504. https://doi.org/10.1007/978-3-642-02962-2_63

  23. Chen M, Tang X, Song T, Wu C, Liu S, Peng X (2020) A Tabu search algorithm with controlled randomization for constructing feasible university course timetables. Comput Oper Res 123(105007):1–31. https://doi.org/10.1016/j.cor.2020.105007

    Article  MathSciNet  Google Scholar 

  24. Al-Betar MA, Khader AT, Zaman M (2012) University course timetabling using a hybrid harmony search metaheuristic algorithm. IEEE Trans Syst Man Cybern Part C Appl Rev 42(5):664–681. https://doi.org/10.1109/TSMCC.2011.2174356

    Article  Google Scholar 

  25. Paechter B (2002) A local search for the timetabling problem. In: Proceedings of the 4th international conference on the practice and theory of automated timetabling. PATAT, pp 21–23

  26. Müller T (2009) ITC2007 solver description: a hybrid approach. Ann Oper Res 172(1):429–446. https://doi.org/10.1007/s10479-009-0644-y

    Article  MATH  Google Scholar 

  27. Wahid J (2017) Hybridizing harmony search with local search based metaheuristic for solving curriculum based university course timetabling. In: The doctoral research abstracts, Institute of Graduate Studies, UiTM, Shah Alam 11(11). http://ir.uitm.edu.my/id/eprint/19762

  28. Mazlan M, Makhtar M, Khairi AFKA, Mohamed MA (2019) University course timetabling model using ant colony optimization algorithm approach. Indonesian Journal of Electrical Engineering and Computer Science 13(1):72–76. https://doi.org/10.11591/ijeecs.v13.i1.pp72-76

    Article  Google Scholar 

  29. Hossain SI, Akhand MAH, Shuvo MIR, Siddique N, Adeli H (2019) Optimization of university course scheduling problem using particle swarm optimization with selective search. Expert Syst Appl 127:9–24. https://doi.org/10.1016/j.eswa.2019.02.026

    Article  Google Scholar 

  30. Gozali AA, Kurniawan B, Weng W, Fujimura S (2020) Solving university course timetabling problem using localized island model genetic algorithm with dual dynamic migration policy. IEEJ Trans Electr Electron Eng 15(3):389–400. https://doi.org/10.1002/tee.23067

    Article  Google Scholar 

  31. Junn KY, Obit JH, Alfred R (2017) Comparison of simulated annealing and great deluge algorithms for university course timetabling problems (UCTP). Adv Sci Lett 23(11):11413–11417. https://doi.org/10.1166/asl.2017.10295

    Article  Google Scholar 

  32. Goh SL, Kendall G, Sabar NR (2019) Simulated annealing with improved reheating and learning for the post enrolment course timetabling problem. J Oper Res Soc 70(6):873–888. https://doi.org/10.1080/01605682.2018.1468862

    Article  Google Scholar 

  33. Yusoff M, Roslan N (2019) Evaluation of genetic algorithm and hybrid genetic Algorithm-Hill climbing with elitist for Lecturer University timetabling problem. In: International conference on swarm intelligence. Springer, Cham, pp 363–373. https://doi.org/10.1007/978-3-030-26369-0_34

  34. Islam T, Shahriar Z, Perves MA, Hasan M (2016) University timetable generator using tabu search. Journal of Computer and Communications 4(16):28–37. https://doi.org/10.4236/jcc.2016.416003

    Article  Google Scholar 

  35. Susan S, Bhutani A (2018) Data mining with association rules for scheduling open elective courses using optimization algorithms. In: International conference on intelligent systems design and applications, Springer, Cham, pp 770–778. https://doi.org/10.1007/978-3-030-16660-1_75

  36. Goh SL, Kendall G, Sabar NR, Abdullah S (2020) An effective hybrid local search approach for the post enrolment course timetabling problem. Opsearch 57(3):1–33. https://doi.org/10.1007/s12597-020-00444-x

    Article  MathSciNet  Google Scholar 

  37. Muklason A, Irianti RG, Marom A (2019) Automated course timetabling optimization using Tabu-variable neighborhood search based hyper-heuristic algorithm. Procedia Computer Science 161:656–664. https://doi.org/10.1016/j.procs.2019.11.169

    Article  Google Scholar 

  38. Matias JB, Fajardo AC, Medina RM (2018) Examining genetic algorithm with guided search and self-adaptive neighborhood strategies for curriculum-based course timetable problem. In: IEEE fourth international conference on advances in computing, communication & automation, pp 1–6. https://doi.org/10.1109/ICACCAF.2018.8776728

  39. Gozali AA, Fujimura S (2020) Solving University course timetabling problem using multi-depth genetic algorithm-solving UCTP using MDGA. In: SHS web of conferences. EDP Sciences, pp 1–18. https://doi.org/10.1051/shsconf/20207701001

  40. Vianna DS, Martins CB, Lima TJ, Vianna MDFD, Meza EBM (2020) Hybrid VNS-TS heuristics for university course timetabling problem. Brazilian Journal of Operations & Production Management 17(2):1–20. https://doi.org/10.14488/BJOPM.2020.014

    Article  Google Scholar 

  41. Gülcü A, Akkan C (2020) Robust university course timetabling problem subject to single and multiple disruptions. Eur J Oper Res 283(2):630–646. https://doi.org/10.1016/j.ejor.2019.11.024

    Article  MathSciNet  MATH  Google Scholar 

  42. Susan S, Bhutani A (2019) A novel memetic algorithm incorporating greedy stochastic local search mutation for Course scheduling. In: 2019 IEEE international conference on computational science and engineering, pp 254–259. https://doi.org/10.1109/CSE/EUC.2019.00056

  43. Habashi SS, Salama C, Yousef AH, Fahmy HM (2018) Adaptive diversifying hyper-Heuristic based approach for timetabling problems. In: 2018 IEEE 9th annual information technology, electronics and mobile communication conference, pp 259–266. https://doi.org/10.1109/IEMCON.2018.8615035

  44. Babaei H, Karimpour J, Hadidi A (2015) A survey of approaches for university course timetabling problem. Comput Ind Eng 86:43–59. https://doi.org/10.1016/j.cie.2014.11.010

    Article  Google Scholar 

  45. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  46. Saruhan H, Rouch KE, Roso CA (2004) Design optimization of tilting-pad journal bearing using a genetic algorithm. International Journal of Rotating Machinery 10(4):301–307. https://doi.org/10.1155/S1023621X04000314

    Article  Google Scholar 

  47. Karami AH, Hasanzadeh M (2012) University course timetabling using a new hybrid genetic algorithm. Computer and Knowledge Engineering, IEEE, pp 144–149. https://doi.org/10.1109/ICCKE.2012.6395368

  48. Jat SN, Yang S (2009) A guided search genetic algorithm for the university course timetabling problem. In: The 4th multidisciplinary international scheduling conference: theory and applications, pp 180–191. http://bura.brunel.ac.uk/handle/2438/5880

  49. Shaker K, Abdullah S, Hatem A (2012) A differential evolution algorithm for the university course timetabling problem. In: 2012 IEEE 4th conference on data mining and optimization, pp 99–102. https://doi.org/10.1109/DMO.2012.6329805

  50. Azadeh A, Elahi S, Farahani MH, Nasirian B (2017) A genetic algorithm-Taguchi based approach to inventory routing problem of a single perishable product with transshipment. Comput Ind Eng 104:124–133. https://doi.org/10.1016/j.cie.2016.12.019

    Article  Google Scholar 

  51. Studenovský J (2009) Polynomial reduction of time–space scheduling to time scheduling. Discret Appl Math 157(7):1364–1378. https://doi.org/10.1016/j.dam.2008.10.014

    Article  MathSciNet  MATH  Google Scholar 

  52. Aladag CH, Hocaoglu G, Basaran MA (2009) The effect of neighborhood structures on tabu search algorithm in solving course timetabling problem. Expert Syst Appl 36(10):12349–12356. https://doi.org/10.1016/j.eswa.2009.04.051

    Article  Google Scholar 

  53. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res 176(1):177–192. https://doi.org/10.1016/j.ejor.2005.08.012

    Article  MathSciNet  MATH  Google Scholar 

  54. Rogalska M, Bożejko W, Hejducki Z (2008) Time/cost optimization using hybrid evolutionary algorithm in construction project scheduling. Autom Constr 18(1):24–31. https://doi.org/10.1016/j.autcon.2008.04.002

    Article  Google Scholar 

  55. Kifah S, Abdullah S (2015) An adaptive non-linear great deluge algorithm for the patient-admission problem. Inf Sci 295:573–585. https://doi.org/10.1016/j.ins.2014.10.004

    Article  MathSciNet  Google Scholar 

  56. Lei Y, Gong M, Jiao L, Zuo Y (2015) A memetic algorithm based on hyper-heuristics for examination timetabling problems. International Journal of Intelligent Computing and Cybernetics 8(2):139–151. https://doi.org/10.1108/IJICC-02-2015-0005

    Article  Google Scholar 

  57. Soria-Alcaraz JA, Özcan E, Swan J, Kendall G, Carpio M (2016) Iterated local search using an add and delete hyper-heuristic for university course timetabling. Appl Soft Comput 40(13):581–593. https://doi.org/10.1016/j.asoc.2015.11.043

    Article  Google Scholar 

  58. Beligiannis GN, Moschopoulos CN, Kaperonis GP, Likothanassis SD (2008) Applying evolutionary computation to the school timetabling problem: the Greek case. Comput Oper Res 35(4):1265–1280. https://doi.org/10.1016/j.cor.2006.08.010

    Article  MATH  Google Scholar 

  59. Nothegger C, Mayer A, Chwatal A, Raidl GR (2012) Solving the post enrolment course timetabling problem by ant colony optimization. Ann Oper Res 194(1):325–339. https://doi.org/10.1007/s10479-012-1078-5

    Article  MathSciNet  MATH  Google Scholar 

  60. Cavdur F, Kose M (2016) A fuzzy logic and binary-goal programming-based approach for solving the exam timetabling problem to create a balanced-exam schedule. International Journal of Fuzzy Systems 18(1):119–129. https://doi.org/10.1007/s40815-015-0046-z

    Article  Google Scholar 

  61. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223. https://doi.org/10.1109/TEVC.2003.810752

    Article  Google Scholar 

  62. Feng X, Lee Y, Moon I (2017) An integer program and a hybrid genetic algorithm for the university timetabling problem. Optimization Methods and Software 32(3):625–649. https://doi.org/10.1080/10556788.2016.1233970

    Article  MathSciNet  MATH  Google Scholar 

  63. Abdullah S, Turabieh H, McCollum B, McMullan P (2012) A hybrid metaheuristic approach to the university course timetabling problem. J Heuristics 18(1):1–23. https://doi.org/10.1007/s10732-010-9154-y

    Article  Google Scholar 

  64. Mladenović N, Dražić M, Kovačevic-Vujčić V, Čangalović M (2008) General variable neighborhood search for the continuous optimization. Eur J Oper Res 191(3):753–770. https://doi.org/10.1016/j.ejor.2006.12.064

    Article  MathSciNet  MATH  Google Scholar 

  65. Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyperheuristic for timetabling and rostering. J Heuristics 9(6):451–470. https://doi.org/10.1023/B:HEUR.0000012446.94732.b6

    Article  Google Scholar 

  66. Asmuni H, Burke EK, Garibaldi JM, McCollum B, Parkes AJ (2009) An investigation of fuzzy multiple heuristic orderings in the construction of university examination timetables. Comput Oper Res 36(4):981–1001. https://doi.org/10.1016/j.cor.2007.12.007

    Article  MATH  Google Scholar 

  67. Badoni RP, Gupta DK, Mishra P (2014) A new hybrid algorithm for university course timetabling problem using events based on groupings of students. Comput Ind Eng 78:12–25. https://doi.org/10.1016/j.cie.2014.09.020

    Article  Google Scholar 

  68. Jat SN, Yang S (2011) A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling. J Sched 14(6):617–637. https://doi.org/10.1007/s10951-010-0202-0

    Article  MathSciNet  Google Scholar 

  69. Cambazard H, Hebrard E, O’Sullivan B, Papadopoulos A (2012) Local search and constraint programming for the post enrolment-based course timetabling problem. Ann Oper Res 194(1):111–135. https://doi.org/10.1007/s10479-010-0737-7

    Article  MATH  Google Scholar 

  70. Lewis R (2012) A time-dependent metaheuristic algorithm for post enrolment-based course timetabling. Ann Oper Res 194(1):273–289. https://doi.org/10.1007/s10479-010-0696-z

    Article  MATH  Google Scholar 

  71. Ceschia S, Di Gaspero L, Schaerf A (2012) Design, engineering, and experimental analysis of a simulated annealing approach to the post-enrolment course timetabling problem. Comput Oper Res 39(7):1615–1624. https://doi.org/10.1016/j.cor.2011.09.014

    Article  Google Scholar 

  72. Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H, Burke EK (2014) Effective learning hyper-heuristics for the course timetabling problem. Eur J Oper Res 238(1):77–86. https://doi.org/10.1016/j.ejor.2014.03.046

    Article  MathSciNet  MATH  Google Scholar 

  73. Lü Z, Hao JK (2010) Adaptive tabu search for course timetabling. Eur J Oper Res 200(1):235–244. https://doi.org/10.1016/j.ejor.2008.12.007

    Article  MATH  Google Scholar 

  74. Banbara M, Inoue K, Kaufmann B, Okimoto T, Schaub T, Soh T, Wanko P (2019) teaspoon: solving the curriculum-based course timetabling problems with answer set programming. Ann Oper Res 275(1):3–37. https://doi.org/10.1007/s10479-018-2757-7

    Article  MathSciNet  MATH  Google Scholar 

  75. Nagata Y (2018) Random partial neighborhood search for the post-enrollment course timetabling problem. Comput Oper Res 90:84–96. https://doi.org/10.1016/j.cor.2017.09.014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rezaeipanah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Full names of applied algorithms (Ai) in Tables 11, 12 and 13. A1: (RIICN: Randomize Iterative Improvement with Composite Nears [52]), A2: (GBHH: Graph Based Hyper Heuristic [53]), A3: (HEA: Hybrid Evolutionary Algorithm [54]), A4: (NLGD: Non-Linear Great Deluge [55]), A5: (MA: Memetic Algorithm [56]), A6: (VNS: Variable Neighborhood Search [52]), A7: (THH: Taboo based Hyper Heuristics [44]), A8: (LS: Local Search [57]), A9: (EA: Evolutionary Algorithm [58]), A10: (ACO: Ant Colony Optimization [59]), A11: (FA: Fuzzy Approach [60]), A12: (EGSGA: Extended Guided Search with Genetic Algorithm [20]), A13: (GA w LS: Genetic Algorithm with Local Search [61]), A14: (GA: Genetic Algorithm [25]), A15: (HGA: Hybrid Genetic Algorithm [62]), A16: (RIIA: Randomised Iterative Improvement Algorithm [44]), A17: (HEA: Hybrid Evolutionary Approach [63]), A18: (GHH: Graph-based Hyper Heuristic [53]), A19: (VNS: Variable Neighborhood Search [64]), A20: (TSH: Tabu-Search Hyperheuristic [65]), A21: (FMH: Fuzzy Multiple Heuristic [66]), A22: (GSGA: Guided Search Genetic Algorithm [48]), A23: (HA: Hybrid Algorithm [67]), A24: (HGATS: Hybrid Genetic Algorithm and Tabu Search [68]), A25: (MMH: Mixed Meta-Heuristic [69]), A26: (HA: Hybrid Algorithm [24]), A27: (ACO w ILS: Ant Colony Optimization with Iterative Local Search [59]), A28: (LS: Local Search [26]), A29: (HHADL: Hyper-Heuristic with Add Delete Lists [43]), A30: (GAGLS: Genetic Algorithms with Guided and Local Search [20]), A31: (TDMH: Time-Dependent Meta-Heuristic [70]), A32: (SA: Simulated Annealing [71]), A33: (HH: Hyper-Heuristics [72]), A34: (TS-ILS: Tabu Search And Iterated Local Search [73]), A36: (CB-CTT: Curriculum-Based Course TimeTabling [74]), A37: (RPNS: Random Partial Neighborhood Search [75]), A38: (SAIRL: Simulated Annealing with Improved Reheating and Learning [32]), A39: (IPGALS: Improved Parallel Genetic Algorithm and Local Search (Proposed Algorithm)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeipanah, A., Matoori, S.S. & Ahmadi, G. A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search. Appl Intell 51, 467–492 (2021). https://doi.org/10.1007/s10489-020-01833-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01833-x

Keywords

Navigation