Abstract
We make explicit a larger structural phenomenon hidden behind the existence of normalizers in terms of existence of certain precartesian maps related to the kernel functor.
Similar content being viewed by others
References
Barr, M.: Exact categories. Springer L. N. Math. 236, 1–120 (1971)
Borceux, F., Clementino, M.M.: Topological semi-abelian algebras. Adv. Math. 190, 425–453 (2005)
Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)
Bourn, D.: Normalization Equivalence, Kernel Equivalence and Affine Categories. Springer L. N. Math. 1488, 43–62 (1991)
Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 43–62 (1996)
Bourn, D.: Normal subobjects and abelian objects in protomodular categories. J. Algebra 228, 143–164 (2000)
Bourn, D.: Normal subobjects of topological groups and of topological semi-Abelian algebras. Topol. Appl. 153, 1341–1364 (2006)
Bourn, D.: Two ways to centralizers of equivalence relations. Applied Categorical Structures, accepted and online (2013). doi:10.1007/s10485-013-9347-2
Bourn, D., Borceux, F.: Mal’cev, protomodular, homological and semi-abelian categories Kluwer. Math. Appl. 566, 479 (2004)
Bourn, D., Gran, M.: Centrality and normality in protomodular categories. Theory Appl. Categ. 9, 151–165 (2002)
Bourn, D., Gray, J.R.A.: Aspects of algebraic exponentiation. Bull. Belg. Math. Soc. Simon Stevin 19, 823–846 (2012)
Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Top. et Géom. Diff. Catégoriques 50, 211–232 (2009)
Bourn, D., Janelidze, Z.: Categorical (binary) difference terms and protomodularity Algebra Universalis. Algebra Univers. 66, 277–316 (2011)
Carboni, A., Kelly, G.M.: Some remarks on maltsev and goursat categories. Appl. Categ. Struct. 1, 365–421 (1993)
Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69, 271–284 (1991)
Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conf. Proc. 13, 97–109 (1992)
Cigoli, A., Mantovani, S.: Action accessibility and centralizers. J. Pure Appl. Algebra 216, 1852–1865 (2012)
Gray, J.R.A.: Algebraic exponentiation and internal homology in general categories. PhD thesis, University of Cape To (2010)
Gray, J.R.A.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20, 543–567 (2012)
Gray, J.R.A.: Normalizers, centralizers and action representability in semi-abelian categories. Applied Categorical Structures, accepted and online (2014). doi:10.1007/s10485-014-9379-2
Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)
Lang, S.: Algebra. Addison-Wesley Publishing Company (1965)
Pedicchio, M.C.: A categorical approach to commutator theory. J. Algebra 177, 143–147 (1995)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bourn, D., Gray, J.R.A. Normalizers and Split Extensions. Appl Categor Struct 23, 753–776 (2015). https://doi.org/10.1007/s10485-014-9382-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-014-9382-7
Keywords
- Categorical algebra
- Algebraic theory
- Normalizer
- Split extension
- Fibration of points
- Protomodular category
- Mal’tsev category
- Unital category
- Topological algebra