Abstract
In general, it needs to take about nearly 10 grid points inside a wall boundary layer for low accuracy order methods to get satisfactory wall-normal gradient related results, such as friction coefficient and wall heat flux. If there exist extreme points inside the boundary layer, this situation becomes even worse. In this work, with the help of the analytic solution of the one-dimensional steady compressible Navier-Stokes equations under some restrictions, we show that the flow variables actually vary in the form of an exponential function instead of a polynomial one inside the boundary layer. Then, we propose an exponential space for approximating the solutions inside the boundary layer and numerically implementing it in the frame of direct discontinuous Galerkin (DDG) method. We show that the DDG methods based on the exponential boundary-layer space give much better numerical results for both conservative variables and wall-normal gradients than those with the standard polynomial space. Generally only 1–2 grid points inside the boundary layer are demanded to resolve the wall boundary layer to obtain satisfactory wall-normal gradients under the exponential space. Preliminary extension to two-dimensional laminar boundary-layer flow shows a similar performance of the proposed exponential boundary-layer space, exhibiting its potential applications in high dimensions.
Similar content being viewed by others
References
Marusic, I., Mckeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J.: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 22, 65–103 (2010)
Schlichting, H.: Boundary-Layer Theory, 7th edn. McGrawHill, New York (1979)
Cebeci, T., Cousteix, J.: Modeling and Computation of Boundary-Layer Flows: Laminar, Turbulent and Transitional Boundary Layers in Incompressible and Compressible Flows (second revised and extended edition). Springer-Verlag, Berlin (2005)
Karman, S. L.: Unstructured viscous layer insertion using linear-elastic smoothing. AIAA J. 45, 168–180 (2007)
Guillaume, V., Fornier, Y., Boubekeur, T.: Hybrid viscous layer insertion in a tetrahedral mesh. In: IMR (Research Note) (2012)
Ito, Y., Nakahashi, K.: Unstructured mesh generation for viscous flow computations. IMR 2002, 367–377 (2002)
Bahrainian, S. S., Mehrdoost, Z.: An automatic unstructured grid generation method for viscous flow simulations, Mathematics and Computers in Simulation (2012)
Garimella, R.V., Shephard, M.S.: Boundary layer mesh generation for viscous flow simulations. Int. J. Numer. Meth. Engng. 49, 193–218 (2000)
Wang, Z. J.: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences 43, 1–41 (2007)
Cockburn, B., Shu, C. -W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)
Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comp. 52, 411–435 (1989)
Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)
Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the multidimensional case. Math. Comp. 54, 545–581 (1990)
Cockburn, B., Shu, C. -W.: The Runge-Kutta local P1 discontinuous Galerkin finite element method for scalar conservation Laws. Math. Comp. 5, 411–435 (1989)
Cockburn, B., Karniadakis, G. E., Shu, C. -W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Nguyen, N., Perrson, P. -O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA Aerospace Science Meeting & Exhibit Reno for Discontinuous Galerkin (2007)
Cockburn, B., Karniadakis, G. E., Shu, C.-W.: The development of discontinuous Galerkin methods (1999)
Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation, Tech. report LA-UR-73-479, Los Alamos Scientific Laboratory, Loa Alamos NM (1973)
Ling, Y., Shu, C. -W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)
Melenk, J. M., Babus̆ka, I.: The partition of unity finite element nethod: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)
Belytschko, T., Black, T.: Elastic creack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601–620 (1999)
Fries, T. P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Engng. 84, 253–304 (2010)
Krank, B., Wall, W. A.: A new approach to wall modeling in LES of incompressible flow via function enrichment. J. Comput. Phys. 316, 94–116 (2016)
Krank, B., Kronbichler, M., Wall, W. A.: Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flows. Int. J. Numer. Meth. Fluids 86, 107–129 (2018)
Farhat, C., Harari, I., Franca, L. P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Engrg. 190, 6455–6479 (2001)
Kalashnikova, I., Farhat, C., Tezaur, R.: A discontinuous enrichment method for the finite element solution of high Péclet advection-diffusion problems. Fini. Elem. Anal. Des. 45, 238–250 (2009)
Kalashnikova, I., Tezaur, R., Farhat, C.: A discontinuous enrichment method for variable-coefficient advection-diffusion at high Péclet number. Int. J. Numer. Meth. Engng. 87, 309–335 (2011)
Borker, R., Farhat, C., Tezaur, R.: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems. J. Comput. Phys. 332, 520–537 (2017)
Tezaur, R., Farhat, C.: Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engng. 66, 796–815 (2006)
Tezaur, R., Zhang, L., Farhat, C.: A discontinuous enrichment method for capturing evanescent waves in multi-scale fluid and fluid/solid problems. Comput. Methods Appl. Mech. Engrg. 197, 1680–1698 (2008)
Zhang, L., Tezaur, R., Farhat, C.: The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime. Int. J. Numer.Meth. Engng. 66, 2086–2114 (2006)
Cockburn, B., Li, F., Shu, C. -W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)
Li, F., Shu, C. -W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22-23, 413–442 (2005)
Li, F., Shu, C. -W.: Reinterpretation and simplified implementiation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett. 18, 1204–1209 (2005)
Li, F., Shu, C. -W.: A local-structure-preserving local discontinuous Galerkin method for the Laplace equation. Methods Appl. Anal. 2, 215–234 (2006)
Thomas, L. H.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–452 (1944)
Morduchow, M., Libby, P.A.: On a complete solution of the one-dimensional flow equations of a viscous, heat conducting, compressible gas. J. Aeron. Sci. 1949 (16), 674–684 (1949)
Hayes, W. D.: Gasdynamic discontinuities. Princeton University Press (1960)
Iannelli, J.: An exact non-linear Navier-Stokes compressible-flow solution for CFD code verification. Int. J. Numer. Meth. Fluids 72, 157–176 (2013)
Johnson, B. M.: Closed-form shock solutions. J. Fluid Mech. 745, R1 (2014)
Johnson, B. M.: Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726, R4 (2013)
Cousteix, J., Mauss, J.: Approximations of the Navier-Stokes equations for high Reynolds number flows past a solid wall. J. Comput. Appl. Math. 166, 101–122 (2004)
Blasius, H.: Grenrschichten in Flussigkeiten mit kleiner Reibung. Z. Math. u. Phys. 56, 1–37 (1908)
Toro, E. F.: Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer-Verlag, Berlin (2009)
Liu, H. L., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)
Cheng, J., Yang, X. Q., Liu, X. D., Liu, T. G., Luo, H.: A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 327, 484–502 (2016)
Cheng, J., Liu, X. D., Liu, T. G., Luo, H.: A parallel, high-order direct discontinuous Galerkin method for the Navier-Stokes equations on 3D hybrid grids. Commun. Comput. Phys. 21, 1231–1257 (2017)
Cockburn, B., Shu, C. -W.: The local discontinuous Galerkin method for time dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Saad, Y., Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Luo, H., Baum, J. D., Lohner, R.: A fast, matrix-free implicit method for compressible flows on unstructured grids. J. Comput. Phys. 146, 664–690 (1998)
Funding
This work is partially supported under the National Numerical Wind Tunnel Project.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Silas Alben
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, F., Cheng, J. & Liu, T. Exponential boundary-layer approximation space for solving the compressible laminar Navier-Stokes equations. Adv Comput Math 46, 33 (2020). https://doi.org/10.1007/s10444-020-09776-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-020-09776-0
Keywords
- Compressible Navier-Stokes equations
- High Reynolds number
- Boundary layer
- Exponential space
- Direct discontinuous Galerkin method