[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Exponential boundary-layer approximation space for solving the compressible laminar Navier-Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In general, it needs to take about nearly 10 grid points inside a wall boundary layer for low accuracy order methods to get satisfactory wall-normal gradient related results, such as friction coefficient and wall heat flux. If there exist extreme points inside the boundary layer, this situation becomes even worse. In this work, with the help of the analytic solution of the one-dimensional steady compressible Navier-Stokes equations under some restrictions, we show that the flow variables actually vary in the form of an exponential function instead of a polynomial one inside the boundary layer. Then, we propose an exponential space for approximating the solutions inside the boundary layer and numerically implementing it in the frame of direct discontinuous Galerkin (DDG) method. We show that the DDG methods based on the exponential boundary-layer space give much better numerical results for both conservative variables and wall-normal gradients than those with the standard polynomial space. Generally only 1–2 grid points inside the boundary layer are demanded to resolve the wall boundary layer to obtain satisfactory wall-normal gradients under the exponential space. Preliminary extension to two-dimensional laminar boundary-layer flow shows a similar performance of the proposed exponential boundary-layer space, exhibiting its potential applications in high dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marusic, I., Mckeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J.: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 22, 65–103 (2010)

    Article  MATH  Google Scholar 

  2. Schlichting, H.: Boundary-Layer Theory, 7th edn. McGrawHill, New York (1979)

    MATH  Google Scholar 

  3. Cebeci, T., Cousteix, J.: Modeling and Computation of Boundary-Layer Flows: Laminar, Turbulent and Transitional Boundary Layers in Incompressible and Compressible Flows (second revised and extended edition). Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

  4. Karman, S. L.: Unstructured viscous layer insertion using linear-elastic smoothing. AIAA J. 45, 168–180 (2007)

    Article  Google Scholar 

  5. Guillaume, V., Fornier, Y., Boubekeur, T.: Hybrid viscous layer insertion in a tetrahedral mesh. In: IMR (Research Note) (2012)

  6. Ito, Y., Nakahashi, K.: Unstructured mesh generation for viscous flow computations. IMR 2002, 367–377 (2002)

    Google Scholar 

  7. Bahrainian, S. S., Mehrdoost, Z.: An automatic unstructured grid generation method for viscous flow simulations, Mathematics and Computers in Simulation (2012)

  8. Garimella, R.V., Shephard, M.S.: Boundary layer mesh generation for viscous flow simulations. Int. J. Numer. Meth. Engng. 49, 193–218 (2000)

    Article  MATH  Google Scholar 

  9. Wang, Z. J.: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences 43, 1–41 (2007)

    Article  Google Scholar 

  10. Cockburn, B., Shu, C. -W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comp. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C. -W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws IV: the multidimensional case. Math. Comp. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C. -W.: The Runge-Kutta local P1 discontinuous Galerkin finite element method for scalar conservation Laws. Math. Comp. 5, 411–435 (1989)

    MATH  Google Scholar 

  15. Cockburn, B., Karniadakis, G. E., Shu, C. -W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nguyen, N., Perrson, P. -O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA Aerospace Science Meeting & Exhibit Reno for Discontinuous Galerkin (2007)

  17. Cockburn, B., Karniadakis, G. E., Shu, C.-W.: The development of discontinuous Galerkin methods (1999)

  18. Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation, Tech. report LA-UR-73-479, Los Alamos Scientific Laboratory, Loa Alamos NM (1973)

  19. Ling, Y., Shu, C. -W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Melenk, J. M., Babus̆ka, I.: The partition of unity finite element nethod: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  Google Scholar 

  21. Belytschko, T., Black, T.: Elastic creack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  22. Fries, T. P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Engng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Krank, B., Wall, W. A.: A new approach to wall modeling in LES of incompressible flow via function enrichment. J. Comput. Phys. 316, 94–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krank, B., Kronbichler, M., Wall, W. A.: Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flows. Int. J. Numer. Meth. Fluids 86, 107–129 (2018)

    Article  MathSciNet  Google Scholar 

  25. Farhat, C., Harari, I., Franca, L. P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Engrg. 190, 6455–6479 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalashnikova, I., Farhat, C., Tezaur, R.: A discontinuous enrichment method for the finite element solution of high Péclet advection-diffusion problems. Fini. Elem. Anal. Des. 45, 238–250 (2009)

    Article  MATH  Google Scholar 

  27. Kalashnikova, I., Tezaur, R., Farhat, C.: A discontinuous enrichment method for variable-coefficient advection-diffusion at high Péclet number. Int. J. Numer. Meth. Engng. 87, 309–335 (2011)

    Article  MATH  Google Scholar 

  28. Borker, R., Farhat, C., Tezaur, R.: A high-order discontinuous Galerkin method for unsteady advection-diffusion problems. J. Comput. Phys. 332, 520–537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tezaur, R., Farhat, C.: Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engng. 66, 796–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tezaur, R., Zhang, L., Farhat, C.: A discontinuous enrichment method for capturing evanescent waves in multi-scale fluid and fluid/solid problems. Comput. Methods Appl. Mech. Engrg. 197, 1680–1698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L., Tezaur, R., Farhat, C.: The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime. Int. J. Numer.Meth. Engng. 66, 2086–2114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cockburn, B., Li, F., Shu, C. -W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, F., Shu, C. -W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22-23, 413–442 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, F., Shu, C. -W.: Reinterpretation and simplified implementiation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett. 18, 1204–1209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, F., Shu, C. -W.: A local-structure-preserving local discontinuous Galerkin method for the Laplace equation. Methods Appl. Anal. 2, 215–234 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Thomas, L. H.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–452 (1944)

    Article  Google Scholar 

  37. Morduchow, M., Libby, P.A.: On a complete solution of the one-dimensional flow equations of a viscous, heat conducting, compressible gas. J. Aeron. Sci. 1949 (16), 674–684 (1949)

    Article  MathSciNet  Google Scholar 

  38. Hayes, W. D.: Gasdynamic discontinuities. Princeton University Press (1960)

  39. Iannelli, J.: An exact non-linear Navier-Stokes compressible-flow solution for CFD code verification. Int. J. Numer. Meth. Fluids 72, 157–176 (2013)

    Article  MathSciNet  Google Scholar 

  40. Johnson, B. M.: Closed-form shock solutions. J. Fluid Mech. 745, R1 (2014)

    Article  MathSciNet  Google Scholar 

  41. Johnson, B. M.: Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726, R4 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cousteix, J., Mauss, J.: Approximations of the Navier-Stokes equations for high Reynolds number flows past a solid wall. J. Comput. Appl. Math. 166, 101–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Blasius, H.: Grenrschichten in Flussigkeiten mit kleiner Reibung. Z. Math. u. Phys. 56, 1–37 (1908)

    MATH  Google Scholar 

  44. Toro, E. F.: Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  45. Liu, H. L., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cheng, J., Yang, X. Q., Liu, X. D., Liu, T. G., Luo, H.: A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 327, 484–502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Cheng, J., Liu, X. D., Liu, T. G., Luo, H.: A parallel, high-order direct discontinuous Galerkin method for the Navier-Stokes equations on 3D hybrid grids. Commun. Comput. Phys. 21, 1231–1257 (2017)

    Article  MathSciNet  Google Scholar 

  48. Cockburn, B., Shu, C. -W.: The local discontinuous Galerkin method for time dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Saad, Y., Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Luo, H., Baum, J. D., Lohner, R.: A fast, matrix-free implicit method for compressible flows on unstructured grids. J. Comput. Phys. 146, 664–690 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is partially supported under the National Numerical Wind Tunnel Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiegang Liu.

Additional information

Communicated by: Silas Alben

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Cheng, J. & Liu, T. Exponential boundary-layer approximation space for solving the compressible laminar Navier-Stokes equations. Adv Comput Math 46, 33 (2020). https://doi.org/10.1007/s10444-020-09776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09776-0

Keywords

Mathematics Subject Classification (2010)

Navigation