[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Evaluation of Performance Characteristics of Primary Display Devices

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to complete a full evaluation of the new EIZO RX850 liquid crystal display and compare it to two currently used medical displays in Australia (EIZO GS510 and Barco MDCG 5121). The American Association of Physicists in Medicine (AAPM) Task Group 18 Quality Control test pattern was used to assess the performance of three high-resolution primary medical displays: EIZO RX850, EIZO GS510, and Barco MDCG 5121. A Konica Minolta spectroradiometer (CS-2000) was used to assess luminance response, non-uniformity, veiling glare, and color uniformity. Qualitative evaluation of noise was also performed. Seven breast lesions were displayed on each monitor and photographed with a calibrated 5.5-MP Olympus E-1 digital SLR camera. ImageJ software was used to sample pixel information from each lesion and surrounding background to calculate their conspicuity index on each of the displays. All monitor fulfilled all AAPM acceptance criteria. The performance characteristics for EIZO RX850, Barco MDCG 5121, and EIZO GS510 respectively were as follows: maximum luminance (490, 500.5, and 413 cd/m2), minimum luminance (0.724, 1.170, and 0.92 cd/m2), contrast ratio (675:1, 428:1, 449:1), just-noticeable difference index (635, 622, 609), non-uniformity (20, 5.92, and 8.5 %), veiling glare (GR = 2465.6, 720.4, 1249.8), and color uniformity (Δuv′ = +0.003, +0.002, +0.002). All monitors demonstrated low noise levels. The conspicuity index (χ) of the lesions was slightly higher in the EIZO RX850 display. All medical displays fulfilled AAPM performance criteria, and performance characteristics of EIZO RX850 are equal to or better than those of the Barco MDCG 5121 and EIZO GS510 displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

M5121:

Barco MDCG5121

GS510:

EIZO GS510

RX850:

EIZO RX850

IPS:

In-plane switching

TFT:

Thin-film transistor

TFT AM LCD:

Thin-film transistor liquid crystal display

CT:

Computed tomography

MR:

Magnetic resonance

US:

Ultrasound

DR:

Digital radiography

CR:

Computed radiography

NM:

Nuclear medicine

FDA:

Food and Drug Administration

AAPM:

American Association of Physicists in Medicine

TG18:

Task Group 18

L max :

Maximum luminance

L min :

Minimum luminance

L amb :

Luminance in the presence of ambient lighting

LR:

Luminance ratio

CR:

Contrast ratio

JND:

Just-noticeable difference

GR:

Glare ratio

Δuv′:

Color uniformity

L min + L amb :

Minimum luminance in the presence of ambient lighting

ACR–AAPM–SIIM:

Technical Standard for Electronic Practice of Medical Imaging

References

  1. Benveniste MF, Rosado-de-Christenson ML, Sabloff BS, et al: Role of imaging in the diagnosis, staging, and treatment of thymoma. Radiographics 31(7):1847–61, 2011. discussion 1861-3

    Article  PubMed  Google Scholar 

  2. Krupinski E, Roehrig H, Furukawa T: Influence of film and monitor display luminance on observer performance and visual search. Acad Radiol 6(7):411–8, 1999

    Article  CAS  PubMed  Google Scholar 

  3. Krupinski EA, Roehrig H: Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays. Acad Radiol 9(6):638–45, 2002

    Article  PubMed  Google Scholar 

  4. Ekpo EU, Hoban AC, McEntee MF: Optimisation of direct digital chest radiography using Cu filtration. Radiography 20(4):346–350, 2014

    Article  Google Scholar 

  5. Krupinski EA, Williams MB, Andriole K, et al: Digital radiography image quality: image processing and display. J Am Coll Radiol 4(6):389–400, 2007

    Article  PubMed  Google Scholar 

  6. Samei E, Dobbins 3rd, JT, Lo JY, et al: A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosim 114:220–9, 2005

    Article  Google Scholar 

  7. Saunders RS, Samei E, Baker J, et al: Comparison of LCD and CRT displays based on efficacy for digital mammography. Acad Radiol 13(11):1317–26, 2006

    Article  PubMed  Google Scholar 

  8. Krupinski EA, Roehrig H: The influence of a perceptually linearized display on observer performance and visual search. Acad Radiol 7(1):8–13, 2000

    Article  CAS  PubMed  Google Scholar 

  9. Badano A, Gagne RM, Jennings RJ, et al: Noise in flat-panel displays with subpixel structure. Med Phys 31(4):715–23, 2004

    Article  PubMed  Google Scholar 

  10. Lowe JM, Brennan PC, Evanoff MG, et al: Variations in performance of LCDs are still evident after DICOM gray-scale standard display calibration. AJR Am J Roentgenol 195(1):181–7, 2010

    Article  PubMed  Google Scholar 

  11. Samei E, Badano A, Chakraborty D, et al: Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–25, 2005

    Article  PubMed  Google Scholar 

  12. Fetterly KA, Blume HR, Flynn MJ, et al: Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays. J Digit Imaging 21(2):193–207, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kenneth S. Kump J.O., John French. Consistent image presentation implemented using DICOM grayscale standard display function. In: Medical Imaging. 2000. San Diego, CA: Proc. SPIE.

  14. von Schulthess GK, Steinert HC, Hany TF: Integrated PET/CT: current applications and future directions. Radiology 238(2):405–22, 2006

    Article  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5, 2012

    Article  CAS  PubMed  Google Scholar 

  16. Manning DJ, Ethell SC, Donovan T: Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. Br J Radiol 77(915):231–5, 2004

    Article  CAS  PubMed  Google Scholar 

  17. Sabnis RW: Color filter technology for liquid crystal displays. Displays 20(3):119–129, 1999

    Article  CAS  Google Scholar 

  18. Kimpe T, Xthona A, Matthijs P, et al: Solution for nonuniformities and spatial noise in medical LCD displays by using pixel-based correction. J Digit Imaging 18(3):209–18, 2005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crespi A, Bonsignore F, et al: Acceptance tests of diagnostic displays in a PACS system according to AAPM TG18. Phys Med 22(1):17–24, 2006

    Article  Google Scholar 

  20. Crespi A, Bonsignore F, Paruccini N, et al: Grayscale calibration and quality assurance of diagnostic monitors in a PACS system. Radiol Med 111(6):863–75, 2006

    Article  CAS  PubMed  Google Scholar 

  21. Jerrold T, Bushberg AS, Leidholdt EM, Boone JM: The essential physics of medical imaging. 3rd edition. Lippincott Williams and Wilkins, 2012

  22. Krupinski EA, Lubin J, Roehrig H, et al: Using a human visual system model to optimize soft-copy mammography display: influence of veiling glare. Acad Radiol 13(3):289–95, 2006

    Article  PubMed  Google Scholar 

  23. Jung H, Kim HJ, Kang WS, et al: Assessment of flat panel LCD primary class display performance based on AAPM TG 18 acceptance protocol. Med Phys 31(7):2155–64, 2004

    Article  PubMed  Google Scholar 

  24. Zhao B, Tan Y, Bell DJ, et al: Exploring intra- and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals. Eur J Radiol 82(6):959–68, 2013

    Article  PubMed  Google Scholar 

  25. Ekpo EU, McEntee MF: Measurement of breast density with digital breast tomosynthesis—a systematic review. Br J Radiol 20140460,2014

  26. Manning D. S., Ethell Lesion conspicuity and AFROC performance in pulmonary nodule detection. Progress in Biomedical Optics and Imaging: Medical Imaging. 3(24),2002,300-311

  27. Hartling L, Hamm M, Milne A, et al: Validity and Inter-Rater Reliability Testing of Quality Assessment Instruments. Rockville MD, 2012

  28. Majumder A, Stevens R: Color nonuniformity in projection-based displays: analysis and solutions. IEEE Trans Vis Comput Graph 10(2):177–88, 2004

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this research would like to thank Professor Patrick Brennan for providing the spectroradiometer and digital camera used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest U. Ekpo.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekpo, E.U., McEntee, M.F. An Evaluation of Performance Characteristics of Primary Display Devices. J Digit Imaging 29, 175–182 (2016). https://doi.org/10.1007/s10278-015-9831-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-015-9831-3

Keywords

Navigation