[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Solution of a non-linear inverse problem to identify the surface normal velocity of ultrasound transducers

Berechnung der Oberflächennormalgeschwindigkeit eines Ultraschalltransducers mithilfe der Lösung eines nichtlinearen inversen Problems

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Summary

Using the spatial impulse response, it is possible to predict the temporal and spatial pressure field distribution of an ultrasound transducer as well as the output signal of the transducer operated in pulse/echo mode for a well-known target under investigation. This prediction requires an a priori chosen surface normal velocity of the active transducer surface, which often does not coincide with the actual surface normal velocity. By contrast, in our work we solve an inverse problem, which yields a spatially discretized weighting function (distribution) for the surface normal velocity of the active transducer surface. Furthermore, this estimated distribution of the surface normal velocity is used to compare simulated data to measured output signals for a transiently excited ultrasound transducer for known targets.

Zusammenfassung

Mit der örtlichen Impulsantwort ("spatial-impulse-response") ist es grundsätzlich möglich, das Schallfeld eines Ultraschalltransducers zeit- und ortsaufgelöst im reinen Sendemodus als auch das Ausgangssignal eines Ultraschalltransducers (betrieben im Puls/Echo-Modus) für ein hinsichtlich seiner akustischen Eigenschaften und geometrischen Abmessungen bekanntes Testobjekt zu berechnen. Dabei wird meist eine bestimmte Verteilung der Oberflächennormalgeschwindigkeit des Transducers angenommen, die nicht den tatsächlichen Gegebenheiten entspricht. In der von uns durchgeführten Forschungsarbeit wird im Gegensatz dazu ein inverses Problem gelöst, das als Ergebnis eine ortsdiskrete Gewichtsfunktion (Verteilung) für die Oberflächennormalgeschwindigkeit des aktiven Transducerbereichs liefert. Die ermittelte örtliche Verteilung der Oberflächennormalgeschwindigkeit wird des Weiteren dazu verwendet, um einen Vergleich zwischen simulierten Daten und tatsächlichen Messdaten eines transient angeregten Ultraschalltransducers für bekannte Testobjekte anzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arditi, M., Stuart Foster, F., Hunt, J. W. (1981): Transient fields of concave annular arrays. Ultrason. Imaging, Vol. 3: 37–61.

    Article  Google Scholar 

  • Bakushinskii A. B. (1984): Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion. USSR Comp. Math. Math. Phys., Vol. 24(4): 181–182.

    Article  Google Scholar 

  • Blaschke (now Kaltenbacher), B., Neubauer, A., Scherzer, O. (1997): On convergence rates for the iteratively regularized Gauss-Newton method. IMA J. Numer. Anal., Vol. 17(3): 421–436.

    Article  MATH  Google Scholar 

  • Engl H. W., Hanke, M., Neubauer, A. (1996): Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Jensen, J. A., Svendsen, N. B. (1992): Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 39(2): 262–267.

    Article  Google Scholar 

  • Kino, G. S. (1987): Acoustic waves, devices, imaging and analog signal processing. New Jersey: Prentice Hall.

    Google Scholar 

  • Kuttruff, H. (1988): Physik und Technik des Ultraschalls. Stuttgart: S. Hirzel Verlag.

    Google Scholar 

  • Lhémery, A. (1991): Impulse-response method to predict echo-responses from targets of complex geometry. Part I: Theory. J. Acoust. Soc. Amer., Vol. 98(4): 2799–2807.

    Article  Google Scholar 

  • McLaren, S., Weight, J. P. (1987): Transmit-receive mode responses from finite-sized targets in fluid media. J. Acoust. Soc. Amer., Vol. 82(6): 2102–2112.

    Article  Google Scholar 

  • Neubauer A. (1988): When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc., Vol. 103: 557–562.

    Article  MATH  Google Scholar 

  • Penttinen, A., Luukkala, M. (1976): The impulse response and pressure nearfield of a curved ultrasonic radiator. J. Phys. D, Appl. Phys., Vol. 9(10): 1547–1557.

    Article  Google Scholar 

  • Tikhonov, A. N. (1963): Regularization of incorrectly posed problems. Soviet. Math. Dokl., Vol. 4: 1624–1627.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupitsch, S., Kindermann, S. & Zagar, B. Solution of a non-linear inverse problem to identify the surface normal velocity of ultrasound transducers. Elektrotech. Inftech. 124, 260–265 (2007). https://doi.org/10.1007/s00502-007-0452-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-007-0452-5

Keywords

Schlüsselwörter

Navigation