Abstract
We show that two partial latin squares of order mk are simultaneously avoidable if m > 4 and \({k>\frac{m^3(m^2-1)}{2}}\). If m = 4, we show the same conclusion when k > 56.
Similar content being viewed by others
References
Anton, H., Bivens, I., Davis, S.: Calculus Early Transcendentals 9th edition, Wiley (2009)
Bryant D., Cavenagh N., Maenhaut B., Pula K., Wanless I.: Nonextendible Latin Cuboids. SIAM J. Discrete Math. 26, 239–249 (2012)
Casselgren C.J.: On avoiding some families of arrays. Discrete Math. 312, 963–972 (2012)
Cavenagh N.: Avoidable partial latin squares of order 4m + 1. Ars Combin. 95, 257–275 (2010)
Chetwynd A.G., Rhodes S.J.: Avoiding multiple entry arrays. J. Graph Theory 25, 257–266 (1997)
Chetwynd A.G., Rhodes S.J.: Avoiding partial Latin squares and intricacy. Discrete Math. 177, 17–32 (1997)
Cutler, J., Öhman, L.-D.: Latin squares with forbidden entries. Electron. J. Combin. 13, Res. Paper 47 (2006)
Daykin D.E., Häggkvist R.: Degrees giving independent edges in a hypergraph. Bull. Austral. Math. Soc. 23, 103–109 (1981)
Denley T., Kuhl J.: A few remarks on avoiding partial latin squares. Ars Combin. 106, 313–319 (2012)
Denley T., Kuhl J.: Completing partial Latin squares: a conjecture of Häggkvist. Congr. Numer 171, 123–128 (2004)
Hinojosa, H., Kuhl, J.: Unavoidable pairs of partial latin squares of order four. Technical Report. http://uwf.edu/mathstat/technical/
Öhman L.-D.: Partial latin squares are avoidable. Ann. Comb 15, 485–497 (2011)