[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Avoiding Pairs of Partial Latin Squares

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We show that two partial latin squares of order mk are simultaneously avoidable if m > 4 and \({k>\frac{m^3(m^2-1)}{2}}\). If m = 4, we show the same conclusion when k > 56.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anton, H., Bivens, I., Davis, S.: Calculus Early Transcendentals 9th edition, Wiley (2009)

  2. Bryant D., Cavenagh N., Maenhaut B., Pula K., Wanless I.: Nonextendible Latin Cuboids. SIAM J. Discrete Math. 26, 239–249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casselgren C.J.: On avoiding some families of arrays. Discrete Math. 312, 963–972 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cavenagh N.: Avoidable partial latin squares of order 4m + 1. Ars Combin. 95, 257–275 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Chetwynd A.G., Rhodes S.J.: Avoiding multiple entry arrays. J. Graph Theory 25, 257–266 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chetwynd A.G., Rhodes S.J.: Avoiding partial Latin squares and intricacy. Discrete Math. 177, 17–32 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cutler, J., Öhman, L.-D.: Latin squares with forbidden entries. Electron. J. Combin. 13, Res. Paper 47 (2006)

  8. Daykin D.E., Häggkvist R.: Degrees giving independent edges in a hypergraph. Bull. Austral. Math. Soc. 23, 103–109 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Denley T., Kuhl J.: A few remarks on avoiding partial latin squares. Ars Combin. 106, 313–319 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Denley T., Kuhl J.: Completing partial Latin squares: a conjecture of Häggkvist. Congr. Numer 171, 123–128 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Hinojosa, H., Kuhl, J.: Unavoidable pairs of partial latin squares of order four. Technical Report. http://uwf.edu/mathstat/technical/

  12. Öhman L.-D.: Partial latin squares are avoidable. Ann. Comb 15, 485–497 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromy Kuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhl, J., Hinojosa, H. Avoiding Pairs of Partial Latin Squares. Graphs and Combinatorics 30, 671–685 (2014). https://doi.org/10.1007/s00373-013-1301-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1301-4

Keywords

Navigation