[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Matching Properties in Total Domination Vertex Critical Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A vertex subset S of a graph G = (V,E) is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number of G, denoted by γ t (G), is the minimum cardinality of a total dominating set of G. A graph G with no isolated vertex is said to be total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, γ t (Gv) < γ t (G). A total domination vertex critical graph G is called k-γ t -critical if γ t (G) = k. In this paper we first show that every 3-γ t -critical graph G of even order has a perfect matching if it is K 1,5-free. Secondly, we show that every 3-γ t -critical graph G of odd order is factor-critical if it is K 1,5-free. Finally, we show that G has a perfect matching if G is a K 1,4-free 4-γ t (G)-critical graph of even order and G is factor-critical if G is a K 1,4-free 4-γ t (G)-critical graph of odd order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R. (eds): Graph Theory with Applications. Elsevier, North Holland (1976)

    Google Scholar 

  2. Cockayne E.J., Dawes R., Hedetniemi S.: Total domination in graphs. Networks 10, 211–219 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. EI-Zahar M., Gravier S., Klobucar A.: On the total domination number of cross products of graphs. Discrete Math. 308, 2025–2029 (2008)

    Article  MathSciNet  Google Scholar 

  4. Favaron O., Henning M.A., Mynhardt C.M., Puech J.: Total domination in graphs with minimum degree three. J. Graph Theory 34, 9–19 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Henning M.A., Kang L.Y., Shan E.F., Yeo A.: On matching and total domination in graphs. Discrete Math. 308, 2313–2318 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kratsch D.: Domination and total domination on asteroidal triple-free graphs. Discrete Appl. Math. 99, 111–123 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shan E.F., Kang L.Y., Henning M.A.: Erratum to: a linear Vizing-like relation relating the size and total domination number of a graph. J. Graph Theory 54, 350–353 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ananchuen N., Ananchuen W., Plummer M.D.: Matching properties in connected domination critical graphs. Discrete Math. 308, 1260–1267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ananchuen N., Plummer M.D.: Matching properties in domination critical graphs. Discrete Math. 277, 1–13 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ananchuen N., Plummer M.D.: Matchings in 3-vertex-critical graphs: the even case. Networks 45, 210–213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ananchuen N., Plummer M.D.: Matchings in 3-vertex-critical graphs: The odd case. Discrete Math. 307, 1651–1658 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ananchuen N., Plummer M.D.: 3-Factor-criticality in domination critical graphs. Discrete Math. 307, 3006–3015 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang T., Yu Q.L.: Factor-critical property in 3-dominating-critical graphs. Discrete Math. 309, 1079–1083 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goddard W., Haynes T.W., Henning M.A., van der Merwe L.C.: The diameter of total domination vertex critical graphs. Discrete Math. 286, 255–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen X.G., Sohn M.Y.: A note on the total domination vertex critical graphs. Ars Combin. 88, 289–294 (2008)

    MathSciNet  Google Scholar 

  16. Mojdeh D.A., Rad N.J.: On an open problem concerning total domination critical graphs. Expo. Math. 25, 175–179 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Wang C.X., Hu Z.Q., Li X.W.: A constructive characterization of total domination vertex critical graphs. Discrete Math. 309, 991–996 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lovász, L., Plummer, M.D. (eds): Matching Theory. North-Holland Inc., Amsterdam (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfang Shan.

Additional information

This research was partially supported by the National Nature Science Foundation of China (No. 60773078), the PuJiang Project of Shanghai (No. 09PJ1405000) and Key Disciplines of Shanghai Municipality (S30104).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Kang, L. & Shan, E. Matching Properties in Total Domination Vertex Critical Graphs. Graphs and Combinatorics 25, 851–861 (2009). https://doi.org/10.1007/s00373-010-0889-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0889-x

Keywords

Mathematics Subject Classification (2000)

Navigation