[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Point set registration based on feature point constraints

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Point set registration is a fundamental task in computer graphics. We present a novel volumetric registration method for three-dimensional solid shapes. The input data include a pair of three-dimensional point sets: a point set of a complete bone and another one from an incomplete bone, such as a hand bone with a hole in the wrist. We achieve the registration by deforming the complete model toward the incomplete model in the guidance of feature point constraints. Our method first performs an initial alignment owing to given data in an arbitrary position, orientation and scale, and then performs a volumetric registration that utilizes as much volumetric information as possible. Our solution is more adaptive to different sceneries such as the volume data have foramen, outlier and hole, and more accurate in comparison with both state-of-the-art rigid and non-rigid registration algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27(3), 85:1–85:10 (2008)

    Google Scholar 

  2. Alexandre, L.A.: 3d descriptors for object and category recognition: a comparative evaluation. In: IEEE International Conference on Intelligent Robotic Systems-IROS Workshop on Color-Depth Camera Fusion in Robotics, pp. 1–6 (2012)

  3. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)

    Google Scholar 

  4. Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 540–547 (1996)

    Google Scholar 

  5. Bernardini, F., Rushmeier, H., Martin, I.M., Mittleman, J., Taubin, G.: Building a digital model of michelangelo’s florentine pieta. IEEE Comput. Graph. Appl. 22(1), 59–67 (2002)

    Google Scholar 

  6. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Google Scholar 

  7. Cao, G.G., Luo, L.M.: Non-rigid medical image registration based on mutual information and thin-plate spline. Chin. J. Med. Instrum. 33(1), 11–14 (2009)

    MathSciNet  Google Scholar 

  8. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of 1991 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)

  9. Cheng, Z.Q., Jiang, W., Dang, G., Martin, R.R., Li, J., Li, H., Chen, Y., Wang, Y., Li, B., Xu, K., Jin, S.: Non-rigid registration in 3d implicit vector space. In: Proceedings of the 2010 Shape Modeling International Conference, SMI ’10, pp. 37–46. IEEE Computer Society, Washington, DC, USA (2010)

  10. Deng, W., Zou, H., Guo, F., Lei, L., Zhou, S., Luo, T.: A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models. Vis. Comput. 34, 1399–1414 (2017)

    Google Scholar 

  11. Fujiwara, K., Nishino, K., Takamatsu, J., Zheng, B., Ikeuchi, K.: Locally rigid globally non-rigid surface registration. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11, pp. 1527–1534. IEEE Computer Society, Washington, DC, USA (2011)

  12. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05, p. 197. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2005)

  13. Hahnel, D., Thrun, S., Burgard, W.: An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03, pp. 915–920. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

  14. Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM SIGGRAPH 2006 Papers. SIGGRAPH ’06, pp. 569–578. ACM, New York, NY, USA (2006)

  15. Ikemoto, L., Gelfand, N., Levoy, M.: A hierarchical method for aligning warped meshes. In: International Conference on 3-D Digital Imaging and Modeling, 2003. 3dim 2003. Proceedings, pp. 434–441 (2003)

  16. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3d distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Google Scholar 

  17. Kang, D., Zhao, X., Niu, D., Liu, M.: A volumetric shape registration based on locally affine-invariant constraint, vol. 1, pp. 504–511 (2017). https://doi.org/10.1109/CSE-EUC.2017.95

  18. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Levoy, M., Rusinkiewicz, S.: Efficient variants of the ICP algorithm. In: International Conference on 3D Digital Imaging and Modeling, p. 145 (2001)

  20. Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J.T., Gusev, G.: 3d self-portraits. ACM Trans. Graph. 32(6), 1–9 (2013)

    Google Scholar 

  21. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Google Scholar 

  22. Postelnicu, G., Zollei, L., Desikan, R., Fischl, B.: Geometry driven volumetric registration. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging, IPMI’07, pp. 675–686. Springer, Berlin, Heidelberg (2007)

  23. Sahillioğlu, Y., Kavan, L.: Skuller: a volumetric shape registration algorithm for modeling skull deformities. Med. Image Anal. 23(1), 15–27 (2015)

    Google Scholar 

  24. Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation. Comput. Vis. Image Underst. 114(3), 334–348 (2010)

    Google Scholar 

  25. Sahillioğlu, Y., Yemez, Y.: Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2203–15 (2012)

    Google Scholar 

  26. Shum, H.Y., Szeliski, R.: Systems and experiment paper: construction of panoramic image mosaics with global and local alignment. Int. J. Comput. Vis. 36(2), 101–130 (2000)

    Google Scholar 

  27. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pp. 109–116. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007)

  28. Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F., Liu, Y., Marshall, A.D., Martin, R., Sun, X., Rosin, P.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19(7), 1199–1217 (2013)

    Google Scholar 

  29. Taubin, G.: A signal processing approach to fair surface design. In: Conference on Computer Graphics and Interactive Techniques, pp. 351–358 (1995)

  30. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Computer Vision—ECCV 2010, pp. 356–369. Springer, Berlin, Heidelberg (2010)

  31. Zhang, R., Chen, X., Shiratori, T., Tong, X., Liu, L.: An efficient volumetric method for non-rigid registration. Graph. Models 79(Suppl C), 1–11 (2015)

    Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Shandong province (Nos. ZR2019MF 013, ZR2019BF026), Project of Jinan Scientific Research Leader’s Laboratory (No. 2018GXRC023), and Doctoral Program of University of Jinan (No. 160100313) supported this work. Funding was provided by National Natural Science Foundation of China (Grant Nos. 61373054, 61472164, 61573166, and 61572230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, M., Niu, D. et al. Point set registration based on feature point constraints. Vis Comput 36, 1725–1738 (2020). https://doi.org/10.1007/s00371-019-01771-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01771-x

Keywords

Navigation