[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Cortexionist architecture: behavioural intelligence of artificial creatures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Traditionally, producing intelligent behaviours for artificial creatures involves modelling their cognitive abilities. This approach raises two problems. On the one hand, defining manually the agent’s knowledge is a heavy and error-prone task that implies the intervention of the animator. On the other hand, the relationship between cognition and intelligence has not been theoretically nor experimentally proven so far. The ecological approaches provide a solution for these problems, by exploring the links between the creature, its body and its environment. Using an artificial life approach, we propose an original model of memory based on the synthesis of several neuroscience theories. The Cortexionist controller integrates cortex-like structure into a connectionist architecture in order to enhance the agent’s adaptation in a dynamic environment, ultimately leading to the emergence of intelligent behaviour. Initial experiments presented in this paper prove the validity of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sanchez, S., Balet, O., Luga, H., Duthen, Y.: Autonomous virtual actors. In: 2nd International Conference on Technologies for Interactive Digital Storytelling and Entertainment. LNCS, Darmstadt, Germany, June 2004, pp. 68–78. Springer, Berlin (2004)

    Google Scholar 

  2. Pelachaud, C.: Multimodal expressive embodied conversational agents. In: MULTIMEDIA ’05: Proceedings of the 13th Annual ACM International Conference on Multimedia, New York, NY, USA, 2005, pp. 683–689. ACM, New York (2005)

    Chapter  Google Scholar 

  3. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  4. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. The MIT Press, Cambridge (2006)

    Google Scholar 

  5. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, New York (2004)

    Google Scholar 

  6. Lassabe, N., Luga, H., Duthen, Y.: A new step for evolving creatures. In: IEEE-ALife’07, Honolulu, Hawaii, pp. 243–251. IEEE, New York (2007)

    Google Scholar 

  7. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graph. Models 69(5–6), 246–274 (2007)

    Article  Google Scholar 

  8. Conde, T., Thalmann, D.: An integrated perception for autonomous virtual agents: active and predictive perception: research articles. Comput. Animat. Virtual Worlds 17(3–4), 457–468 (2006)

    Article  Google Scholar 

  9. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In: The 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 29–38. ACM Press/Addison-Wesley, New York (1999)

    Google Scholar 

  10. Donikian, S.: HPTS: a behaviour modelling language for autonomous agents. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal, Canada, 2001

  11. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom., 14–23 (1986)

  12. Minsky, M.: A framework for representing knowledge. Psychol. Comput. Vision, 211–277 (1975)

  13. Kallmann, M., Thalmann, D.: A behavioral interface to simulate agent–object interactions in real-time. In: Proceedings of Computer Animation 99, Geneva, 1999, pp. 138–146. IEEE Computer Society Press, Los Alamitos (1999)

    Chapter  Google Scholar 

  14. Harnad, S.: The symbol grounding problem. Physica 42, 335–346 (1990)

    Google Scholar 

  15. Panzoli, D., Luga, H., Duthen, Y.: Beyond reactive systems: An associative memory for sensory-driven intelligent behavior. In: Proceedings of the International Conference on CyberWorlds, Bradford, UK, September 2009, pp. 63–70

  16. Frye, J., Ananthanarayanan, R., Modha, D.S.: Towards real-time, mouse-scale cortical simulations. In: CoSyNe: Computational and Systems Neuroscience, 2007

  17. Meyer, J.-A., Guillot, A., Pirim, P., Berthoz, A.: Psikharpax: An autonomous and adaptive artificial rat. In: Proceedings of ISR2004, the 35th International Symposium on Robotics, Paris, 2004

  18. Filliat, D., Meyer, J.-A.: Active perception and map learning for robot navigation. In: From Animals to Animats 6, Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, pp. 246–255. The MIT Press, Cambridge (2000)

    Google Scholar 

  19. Girard, B., Cuzin, V., Guillot, A., Gurney, K., Prescott, T.J.: A basal ganglia inspired model of action selection evaluated in a robotic survival task. J. Integr. Neurosci. 2(22), 179–200 (2003)

    Article  Google Scholar 

  20. Gibbs, R.W.: A review of ‘how the body shapes the way we think: a new view of intelligence’ from Rolf Pfeifer and Josh Bongard. Pragmat. Cognit. 15(3), 610–614 (2007)

    Google Scholar 

  21. McLean, Paul: The Triune Brain in Evolution. Springer, Berlin (1990)

    Google Scholar 

  22. George, D., Hawkins, J.: A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN’05), 2005

  23. Cliff, D., Miller, G.F.: Co-evolution of pursuit and evasion II: simulation methods and results. In: From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, pp. 506–514. The MIT Press, Cambridge (1996)

    Google Scholar 

  24. Terzopoulos, D., Tu, X.: Artificial fishes: physics, locomotion, perception, behavior. In: SIGGRAPH’94 Computer Graphics, ACM SIGGRAPH, pp. 42–48. ACM Press, New York (1994)

    Google Scholar 

  25. Blumberg, B.M., Todd, P.M., Maes, P.: No bad dogs: ethological lessons for learning in Hamsterdam. In: Proceedings of the 4th International Conference on the Simulation of Adaptive Behavior, 1996

  26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  27. Anderson, J.R.: The Architecture of Cognition. Harvard University Press, Cambridge (1983)

    Google Scholar 

  28. Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)

    Google Scholar 

  29. Hebb, D.: The Organisation of Behavior. Wiley, New York (1949)

    Google Scholar 

  30. Cohen, N.J., Squire, L.R.: Preserved learning and retention of pattern analysing skill in amnesia: dissociation of knowing how and knowing that. Science 210, 207–209 (1980)

    Article  Google Scholar 

  31. Atkinson, R.C., Shiffrin, R.M.: Human memory: a proposed system and its control processes. In: Spence, K.W. (ed.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 2, pp. 89–195. Academic Press, New York (1968)

    Chapter  Google Scholar 

  32. Hall, E.T.: The Hidden Dimension. Anchor Books, Peterborough (1966)

    Google Scholar 

  33. Baddeley, A., Hitch, G.: Working memory. In: Recent Advances in Learning and Motivation, vol. 8. Academic Press, New-York (1974)

    Google Scholar 

  34. Craik, F.I.M., Lockhart, R.S.: Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11, 671–684 (1972)

    Article  Google Scholar 

  35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  36. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Panzoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzoli, D., de Freitas, S., Duthen, Y. et al. The Cortexionist architecture: behavioural intelligence of artificial creatures. Vis Comput 26, 353–366 (2010). https://doi.org/10.1007/s00371-010-0424-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0424-3

Keywords

Navigation