[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the problem of generating the monomials of a black box polynomial in the context of enumeration complexity. We present three new randomized algorithms for restricted classes of polynomials with a polynomial or incremental delay, and the same global running time as the classical ones. We introduce TotalBPP, IncBPP and DelayBPP, which are probabilistic counterparts of the most common classes for enumeration problems. Our interpolation algorithms are applied to algebraic representations of several combinatorial enumeration problems, which are so proved to belong to the introduced complexity classes. In particular, the spanning hypertrees of a 3-uniform hypergraph can be enumerated with a polynomial delay. Finally, we study polynomials given by circuits and prove that we can derandomize the interpolation algorithms on classes of bounded-depth circuits. We also prove the hardness of some problems on polynomials of low degree and small circuit complexity, which suggests that our good interpolation algorithm for multilinear polynomials cannot be generalized to degree 2 polynomials. This article is an improved and extended version of Strozecki (Mathematical Foundations of Computer Science, pp. 629–640, 2010) and of the third chapter of the author’s Ph.D. Thesis (Strozecki, Ph.D. Thesis, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 2

Similar content being viewed by others

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, M., Saha, C., Saptharishi, R., Saxena, N.: Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits. In: STOC, pp. 599–614 (2012)

    Google Scholar 

  3. Aigner, M.: A course in enumeration. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for multilinear constant-read formulae. In: Proceedings of the 26rd Annual IEEE Conference on Computational Complexity, CCC (2011)

    Google Scholar 

  5. Arora, S., Barak, B.: Computational Complexity: a Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  6. Arvind, V., Joglekar, P.S.: Arithmetic circuit size, identity testing, and finite automata. Electron. Colloq. Comput. Complex. 16, 26 (2009)

    Google Scholar 

  7. Bagan, G.: Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes logiques. Ph.D. Thesis, Université de Caen (2009)

  8. Ben-Or, M.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 301–309. ACM, New York (1988)

    Google Scholar 

  9. Bürgisser, P.: Completeness and reduction in algebraic complexity theory vol. 7. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B.: Linear delay enumeration and monadic second-order logic. Discrete Appl. Math. 157(12), 2675–2700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. DeMillo, R.: A probabilistic remark on algebraic program testing. Tech. rep., DTIC document (1977)

  13. Durand, A., Grandjean, E.: First-order queries on structures of bounded degree are computable with constant delay. ACM Trans. Comput. Log. 8(4), 21–es (2007)

    Article  MathSciNet  Google Scholar 

  14. Durand, A., Strozecki, Y.: Enumeration complexity of logical query problems with second-order variables. In: Proceedings of the 20th Conference on Computer Science Logic, pp. 189–202 (2011)

    Google Scholar 

  15. Duris, D., Strozecki, Y.: The complexity of acyclic subhypergraph problems. In: Workshop on Algorithms and Computation, pp. 45–56 (2011)

    Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)

    Google Scholar 

  17. Fournier, H., Malod, G., Mengel, S.: Monomials in arithmetic circuits: complete problems in the counting hierarchy. In: STACS, pp. 362–373 (2012)

    Google Scholar 

  18. Garey, M., Johnson, D.: Computers and Intractability: a Guide to NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  19. Garg, S., Schost, É.: Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410(27–29), 2659–2662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldberg, L.: Listing graphs that satisfy first-order sentences. J. Comput. Syst. Sci. 49(2), 408–424 (1994)

    Article  MATH  Google Scholar 

  21. Ibarra, O., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. ACM 30(1), 217–228 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  23. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaltofen, E., Koiran, P.: Expressing a fraction of two determinants as a determinant. In: Proceedings of the 21st International Symposium on Symbolic and Algebraic Computation, pp. 141–146. ACM, New York (2008)

    Google Scholar 

  25. Kaltofen, E., Lee, W., Lobo, A.: Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 192–201. ACM, New York (2000)

    Chapter  Google Scholar 

  26. Karnin, Z., Mukhopadhyay, P., Shpilka, A., Volkovich, I.: Deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 649–658. ACM, New York (2010)

    Google Scholar 

  27. Kayal, N., Saha, C.: On the sum of square roots of polynomials and related problems. In: IEEE Conference on Computational Complexity, pp. 292–299 (2011)

    Google Scholar 

  28. Kiefer, S., Murawski, A., Ouaknine, J., Wachter, B., Worrell, J.: Language equivalence for probabilistic automata. In: Computer Aided Verification, pp. 526–540. Springer, Berlin (2011)

    Chapter  Google Scholar 

  29. Klivans, A., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings of the 33rd Annual ACM symposium on Theory of Computing, pp. 216–223. ACM, New York (2001)

    Chapter  Google Scholar 

  30. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Automata, Languages and Programming, pp. 653–664 (2009)

    Chapter  Google Scholar 

  31. Lovász, L.: Matroid matching and some applications. J. Comb. Theory, Ser. B 28(2), 208–236 (1980)

    Article  MATH  Google Scholar 

  32. Mahajan, M., Rao, B.V.R., Sreenivasaiah, K.: Identity testing, multilinearity testing, and monomials in read-once/twice formulas and branching programs. In: MFCS, pp. 655–667 (2012)

    Google Scholar 

  33. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. J. Complex. 24(1), 16–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Masbaum, G., Vaintrob, A.: A new matrix-tree theorem. Int. Math. Res. Not. 2002(27), 1397 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 345–354. ACM, New York (1987)

    Google Scholar 

  36. Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)

    Article  MATH  Google Scholar 

  37. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2), 373–386 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Saraf, S., Volkovich, I.: Black-box identity testing of depth-4 multilinear circuits. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pp. 421–430 (2011)

    Google Scholar 

  39. Saxena, N., Seshadhri, C.: An almost optimal rank bound for depth-3 identities. SIAM J. Comput. 40(1), 200–224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 717 (1980)

    Google Scholar 

  41. Strozecki, Y.: Enumeration complexity and matroid decomposition. Ph.D. Thesis, Université Paris Diderot, Paris 7 (2010)

  42. Strozecki, Y.: Enumeration of the monomials of a polynomial and related complexity classes. In: Mathematical Foundations of Computer Science, pp. 629–640 (2010)

    Google Scholar 

  43. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Trans. Inf. Syst. 75(1), 116–124 (1992)

    Google Scholar 

  44. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Algorithms and Computation, pp. 92–101 (1997)

    Chapter  Google Scholar 

  45. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zur Gathen J, v.: Feasible arithmetic computations: Valiant’s hypothesis. J. Symb. Comput. 4(2), 137–172 (1987)

    Article  Google Scholar 

  47. Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 887–898. ACM, New York (2012)

    Google Scholar 

  48. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and Algebraic Computation, pp. 216–226 (1979)

    Chapter  Google Scholar 

  49. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comput. 9(3), 375–403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to Hervé Fournier “l’astucieux”, Guillaume Malod, Sylvain Perifel and Arnaud Durand for their helpful comments about this article. The conversations I had with Meena Mahajan led to improvements of the last section of this article. I would also like to thank an anonymous referee of the conference version of this article for his good suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Strozecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strozecki, Y. On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation. Theory Comput Syst 53, 532–568 (2013). https://doi.org/10.1007/s00224-012-9442-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9442-z

Keywords

Navigation