Abstract
Consider the following cascading process on a simple undirected graph G(V,E) with diameter Δ. In round zero, a set S⊆V of vertices, called the seeds, are active. In round i+1, i∈ℕ, a non-isolated vertex is activated if at least a ρ∈(0,1] fraction of its neighbors are active in round i; it is deactivated otherwise. For k∈ℕ, let min-seed(k)(G,ρ) be the minimum number of seeds needed to activate all vertices in or before round k. This paper derives upper bounds on min-seed(k)(G,ρ). In particular, if G is connected and there exist constants C>0 and γ>2 such that the fraction of degree-k vertices in G is at most C/k γ for all k∈ℤ+, then min-seed(Δ)(G,ρ)=O(⌈ρ γ−1|V|⌉). Furthermore, for n∈ℤ+, p=Ω((ln(e/ρ))/(ρn)) and with probability 1−exp(−n Ω(1)) over the Erdős-Rényi random graphs G(n,p), min-seed(1)(G(n,p),ρ)=O(ρn).
Similar content being viewed by others
References
Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)
Adams, S.S., Brass, Z., Stokes, C., Troxell, D.S.: Irreversible k-threshold and majority conversion processes on complete multipartite graphs and graph products. Technical Report arXiv:1102.5361, Cornell University (2011)
Adams, S.S., Troxell, D.S., Zinnen, S.L.: Dynamic monopolies and feedback vertex sets in hexagonal grids. Comput. Math. Appl. 62(11), 4049–4057 (2011)
Balogh, J., Pete, G.: Random disease on the square grid. Random Struct. Algorithms 13(3–4), 409–422 (1998)
Berger, E.: Dynamic monopolies of constant size. J. Comb. Theory, Ser. B 83(2), 191–200 (2001)
Bermond, J.-C., Bond, J., Peleg, D., Perennes, S.: The power of small coalitions in graphs. Discrete Appl. Math. 127(3), 399–414 (2003)
Blume, L.E.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5(3), 387–424 (1993)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004)
Bonato, A.: A survey of models of the Web graph. In: López-Ortiz, A., Hamel, A. (eds.) Proceedings of the 1st Workshop on Combinatorial and Algorithmic Aspects of Networking, pp. 159–172. Springer, Berlin, Heidelberg (2004)
Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27–29), 2714–2724 (2009)
Chang, C.-L., Lyuu, Y.-D.: Bounding the number of tolerable faults in majority-based systems. In: Calamoneri, T., Díaz, J. (eds.) Proceedings of the 7th International Conference on Algorithms and Complexity, Rome, Italy, pp. 109–119. Springer, Berlin, Heidelberg (2010)
Chang, C.-L., Lyuu, Y.-D.: Spreading of messages in random graphs. Theory Comput. Syst. 48(2), 389–401 (2011)
Chang, C.-L., Lyuu, Y.-D.: Stable sets of threshold-based cascades on the Erdős-Rényi random graphs. In: Proceedings of the 22nd International Workshop on Combinatorial Algorithms, pp. 96–105 (2011)
Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Math. 1(1), 91–114 (2004)
Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks, pp. 89–104. Springer, Berlin, Heidelberg (2004)
Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)
Donato, D., Laura, L., Leonardi, S., Millozzi, S.: Simulating the Webgraph: A comparative analysis of models. Comput. Sci. Eng. 6(6), 84–89 (2004)
Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)
Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5), 1047–1071 (1993)
Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal rings. Discrete Appl. Math. 113(1), 23–42 (2001)
Flocchini, P., Královič, R., Ružička, P., Roncato, A., Santoro, N.: On time versus size for monotone dynamic monopolies in regular topologies. J. Discrete Algorithms 1(2), 129–150 (2003)
Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)
Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)
Kleinberg, J.: Cascading behavior in networks: Algorithmic and economic issues. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)
Kynčl, J., Lidický, B., Vyskočil, T.: Irreversible 2-conversion set is NP-complete. Technical Report KAM-DIMATIA Series 2009-933, Department of Applied Mathematics, Charles University, Prague, Czech Republic (2009)
Linial, N., Peleg, D., Rabinovich, Y., Saks, M.: Sphere packing and local majorities in graphs. In: Proceedings of the 2nd Israel Symposium on Theory of Computing Systems, pp. 141–149 (1993)
Luccio, F.: Almost exact minimum feedback vertex set in meshes and butterflies. Inf. Process. Lett. 66(2), 59–64 (1998)
Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Proceedings of the 6th International Colloquium on Structural Information & Communication Complexity, pp. 204–218 (1999)
Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 303–312 (2009)
Morris, S.: Contagion. Rev. Econ. Stud. 67(1), 57–78 (2000)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Peleg, D.: Graph immunity against local influence. Technical Report CS96-11, Weizmann Science Press of Israel (1996)
Peleg, D.: Size bounds for dynamic monopolies. Discrete Appl. Math. 86(2–3), 263–273 (1998)
Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor. Comput. Sci. 282(2), 231–257 (2002)
Pike, D.A., Zou, Y.: Decycling Cartesian products of two cycles. SIAM J. Discrete Math. 19(3), 651–663 (2005)
Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99(9), 5766–5771 (2002)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, New York (2001)
Young, H.P.: The diffusion of innovations in social networks. In: Blume, L.E., Durlauf, S.N. (eds.) Economy as an Evolving Complex System. Proceedings Volume in the Santa Fe Institute Studies in the Sciences of Complexity, vol. 3, pp. 267–282. Oxford University Press, New York (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are supported in part by the National Science Council of Taiwan under grant 99-2218-E-155-014-MY2.
Rights and permissions
About this article
Cite this article
Chang, CL., Wang, CH. On Reversible Cascades in Scale-Free and Erdős-Rényi Random Graphs. Theory Comput Syst 52, 303–318 (2013). https://doi.org/10.1007/s00224-012-9387-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-012-9387-2