[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we design and analyze an efficient numerical method to solve two dimensional initial-boundary value reaction–diffusion problems, for which the diffusion parameter can be very small with respect to the reaction term. The method is defined by combining the Peaceman and Rachford alternating direction method to discretize in time, together with a HODIE finite difference scheme constructed on a tailored mesh. We prove that the resulting scheme is ε-uniformly convergent of second order in time and of third order in spatial variables. Some numerical examples illustrate the efficiency of the method and the orders of uniform convergence proved theoretically. We also show that it is easy to avoid the well-known order reduction phenomenon, which is usually produced in the time integration process when the boundary conditions are time dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso-Mallo I., Cano B. and Jorge J.C. (2004). Spectral-fractional step Runge–Kutta discretizations for initial boundary value problems with time dependent boundary conditions. Math. Comput. 73: 1801–1825

    Article  MATH  MathSciNet  Google Scholar 

  2. Clavero C. and Gracia J.L. (2005). High order methods for elliptic and time dependent reaction–diffusion singularly perturbed problemsms. Appl. Math. Comput. 168: 1109–1127

    Article  MATH  MathSciNet  Google Scholar 

  3. Clavero C., Gracia J.L. and Jorge J.C. (2006). A uniformly convergent alternating direction HODIE finite difference scheme for 2D time dependent convection-diffusion problems. IMA J. Numer. Anal. 26: 155–172

    Article  MATH  MathSciNet  Google Scholar 

  4. Clavero C., Jorge J.C., Lisbona F. and Shishkin G.I. (1998). A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection–diffusion prolems. Appl. Numer. Math. 27: 211–231

    Article  MATH  MathSciNet  Google Scholar 

  5. Clavero C., Jorge J.C., Lisbona F. and Shishkin G.I. (2000). An alternating direction scheme on a nonuniform mesh for reaction–difusion parabolic problems. IMA J. Numer. Anal. 20: 263–280

    Article  MATH  MathSciNet  Google Scholar 

  6. Farrell P.A., Hegarty A.F., Miller J.J.H., O‘Riordan E. and Shishkin G.I. (2000). Robust Computational Techniques for Boundary Layers. Chapman and Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  7. Han H. and Kellogg R.B. (1990). Differentiability properties of solutions of the equation \(-\varepsilon^{2}\delta u +ru=f(x,y)\) in a square. SIAM J. Math. Anal. 21: 394–408

    Article  MATH  MathSciNet  Google Scholar 

  8. Hemker P.W., Shishkin G.I. and Shishkina L.P. (1997). The use of defect correction for the solution of parabolic singular perturbation problems. ZAMM 77: 59–74

    Article  MATH  MathSciNet  Google Scholar 

  9. Hemker P.W., Shishkin G.I. and Shishkina L.P. (2000). ε-uniform schemes with high-order time-accuracy for parabolic singular perurbation problems. IMA J. Numer. Anal. 20: 99–121

    Article  MATH  MathSciNet  Google Scholar 

  10. Kopteva N. (2003). Error expansion for an upwind scheme applied to a two dimensional convection-diffusion problem. SIAM J. Numer. Anal. 41: 1851–1869

    Article  MATH  MathSciNet  Google Scholar 

  11. Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, 23, AMS, Providence, RI (1968)

  12. Linß T. and Stynes M. (2001). Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem. J. Math. Anal. Appl. 261: 604–632

    Article  MATH  MathSciNet  Google Scholar 

  13. Linß T. (2003). Layer-adapted meshes for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 192: 1061–1105

    Article  MATH  Google Scholar 

  14. Miller J.J.H., O’Riordan E. and Shishkin G.I. (1996). Fitted Numerical Methods for Singular Perturbation Problems. World-Scientific, Singapore

    MATH  Google Scholar 

  15. Miller J.J.H., O’Riordan E., Shishkin G.I. and Shishkina L.P. (1998). Fitted mesh methods for problems with parabolic boundary layers. Mathematical Proceedings of the Royal Irish Academy 98A: 173–190

    MATH  MathSciNet  Google Scholar 

  16. Palencia C. (1993). A stability result for sectorial operators in Banach spaces. SIAM J. Numer. Anal. 30: 1373–1384

    Article  MATH  MathSciNet  Google Scholar 

  17. Peaceman D. and Rachford H. (1955). The numerical solution of elliptic and parabolic differential equations. J. SIAM 3: 28–41

    MATH  MathSciNet  Google Scholar 

  18. Roos H.G., Stynes M. and Tobiska L. (1996). Numerical Methods for Singularly Perturbed Differential Equations, Convection–Diffusion and Flow Problems. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Clavero.

Additional information

This research has been partially supported by the project MEC/FEDER MTM2004-01905 and the Diputación General de Aragón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujanda, B., Clavero, C., Gracia, J.L. et al. A high order uniformly convergent alternating direction scheme for time dependent reaction–diffusion singularly perturbed problems. Numer. Math. 107, 1–25 (2007). https://doi.org/10.1007/s00211-007-0083-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0083-0

Mathematics Subject Classification (1991)

Navigation