[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Two-level additive Schwarz preconditioners for C 0 interior penalty methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study two-level additive Schwarz preconditioners that can be used in the iterative solution of the discrete problems resulting from C 0 interior penalty methods for fourth order elliptic boundary value problems. We show that the condition number of the preconditioned system is bounded by C(1+(H 3/δ 3)), where H is the typical diameter of a subdomain, δ measures the overlap among the subdomains and the positive constant C is independent of the mesh sizes and the number of subdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces (Second Edition). Academic Press, Amsterdam, 2003

  2. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72, 701–709 (1968)

    Google Scholar 

  3. Bacuta, C., Bramble, J.H., Pasciak, J.E.: Shift theorems for the biharmonic Dirichlet problem. In Recent Progress in Computational and Applied PDEs, Kluwer/Plenum, New York, 2002, pp. 1–26

  4. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Bjørstad, P., Mandel, J.: On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31, 76–88 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bogner, F.K., Fox, R.L., Schmit, L.A.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. In Proceedings Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B., Dayton, OH, 1965, pp. 397–444

  7. Bramble, J.H., Pasciak, J.E., Zhang, X.: Two-level preconditioners for 2m'th order elliptic finite element problems. East-West J. Numer. Math. 4, 99–120 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Brenner, S.C.: A two-level additive Schwarz preconditioner for macro-element approximations of the plate bending problem. Houston J. Math. 21, 823–844 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Brenner, S.C.: A two-level additive Schwarz preconditioner for nonconforming plate elements. Numer. Math. 72, 419–447 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comp. 65, 897–921 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods (Second Edition). Springer-Verlag, New York-Berlin-Heidelberg, 2002

  12. Brenner, S.C., Sung, L.-Y.: Multigrid algorithms for C 0 interior penalty methods. IMI Research Report 2004:11 (http://www.math.sc.edu-4pt/~imip/04.html), Department of Mathematics, University of South Carolina, 2004

  13. Brenner, S.C., Sung, L.-Y.: C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Google Scholar 

  14. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978

  15. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341. Springer-Verlag, Berlin-Heidelberg, 1988

  16. Dryja, M., Widlund, O.B.: An additive variant of the Schwarz alternating method in the case of many subregions. Technical Report 339, Department of Computer Science, Courant Institute, 1987

  17. Dryja, M., Widlund, O.B.: Some domain decomposition algorithms for elliptic problems. In L. Hayes and D. Kincaid, editors, Iterative Methods for Large Linear Systems, Academic Press, San Diego, CA, 1989, pp. 273–291

  18. Dryja, M., Widlund, O.B.: Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput. 15, 604–620 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39, 1343–1365 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feng, X., Karakashian, O.A.: Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22/23, 289–314 (2005)

    Google Scholar 

  22. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    MATH  Google Scholar 

  23. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70, 163–180 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston, 1985

  25. Lasser, C., Toselli, A.: An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comp. 72, 1215–1238 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin-New York, 1994

  27. Nepomnyaschikh, S.: On the application of the bordering method to the mixed boundary value problem for elliptic equations and on mesh norms in W 1/2 2(S). Sov. J. Numer. Anal. Math. Modelling 4, 493–506 (1989)

    MathSciNet  Google Scholar 

  28. Rudin, W.: Functional Analysis (Second Edition). McGraw-Hill, New York, 1991

  29. Shu, J.Y., King, W.E., Fleck, N.A.: Finite elements for materials with strain gradient effects. Internat. J. Numer. Meth. Engrg. 44, 373–391 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition. Cambridge University Press, Cambridge, 1996

  31. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Review 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang, X.: Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem. PhD thesis, Courant Institute, 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner.

Additional information

This work was supported in part by the National Science Foundation under Grant No. DMS-03-11790.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, S., Wang, K. Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math. 102, 231–255 (2005). https://doi.org/10.1007/s00211-005-0641-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0641-2

Mathematics Subject Classification (2000)

Navigation