Abstract
Recently, salient object detection (SOD) has achieved significant progress with the rapid development of convolutional neural networks (CNNs). However, the enhancement of SOD accuracy often comes at the cost of increased network size and computational complexity, hindering the application of existing SOD methods to lightweight devices, particularly robot devices. To address this issue, we propose a lightweight grouping interaction learning network (GILNet) for efficient and effective multi-level feature learning and shared feature aggregation. Specifically, our novel grouping interaction learning module (GIL) enables efficient feature extraction, and based on this module, we construct a lightweight backbone network to extract multi-scale features. Furthermore, we introduce a shared feature aggregation (SFA) module to aggregate these features in a shared manner, and a progressive guidance prediction (PGP) module to gradually refine the saliency predictions. Extensive experiments on five popular benchmarks demonstrate that GILNet yields comparable accuracy with state-of-the-art methods. More importantly, GILNet operates at a GPU speed of 345 frames/s with only 1.21M parameters, representing a significant reduction in computational cost and model size. These results highlight the significance of our method in achieving a better trade-off between accuracy and efficiency.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability and access
The data that was used is confidential and has not been shared.
References
Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E (2024) Brain image segmentation for ultrascale neuron reconstruction via an adaptive dual-task learning network. IEEE Trans Med Imaging 43(7):2574–2586
Yang J, Jiao L, Shang R, Liu X, Li R, Xu L (2023) Ept-net: Edge perception transformer for 3d medical image segmentation. IEEE Trans Med Imaging 42(11):3229–3243
Liu S, Xu X, Zhang Y, Muhammad K, Fu W (2023) A reliable sample selection strategy for weakly supervised visual tracking. IEEE Trans Reliab 72(1):15–26
Teng Z, Xing J, Wang Q, Zhang B, Fan J (2020) Deep spatial and temporal network for robust visual object tracking. IEEE Trans Image Process 29:1762–1775
Han L, Paoletti ME, Tao X, Wu Z, Haut JM, Li P, Pastor-Vargas R, Plaza A (2024) Hash-based remote sensing image retrieval. IEEE Trans Geosci Remote Sens 62:1–23
Brogan J, Bharati A, Moreira D, Rocha A, Bowyer KW, Flynn PJ, Scheirer WJ (2021) Fast local spatial verification for feature-agnostic large-scale image retrieval. IEEE Trans Image Process 30:6892–6905
Wu Z, Liu C, Wen J, Xu Y, Yang J, Li X (2023) Selecting high-quality proposals for weakly supervised object detection with bottom-up aggregated attention and phase-aware loss. IEEE Trans Image Process 32:682–693
Zhang Y, Zhou W, Ran X, Fang M (2024) Lightweight dual stream network with knowledge distillation for rgb-d scene parsing. IEEE Signal Process Lett 31:855–859
Zeng H, Li L, Cao Z, Zhang L (2022) Grid anchor based image cropping: A new benchmark and an efficient model. IEEE Trans Pattern Anal Mach Intell 44(3):1304–1319
Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: Aggregating multi-level convolutional features for salient object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 202–211
Wang L, Chen R, Zhu L, Xie H, Li X (2021) Deep sub-region network for salient object detection. IEEE Trans Circ Syst Video Technol 31(2):728–741
Li J, Pan Z, Liu Q, Wang Z (2021) Stacked u-shape network with channel-wise attention for salient object detection. IEEE Trans Multimed 23:1397–1409
Li X, Song D, Dong Y (2020) Hierarchical feature fusion network for salient object detection. IEEE Trans Image Process 29:9165–9175
Zhang L, Zhang Q, Zhao R (2022) Progressive dual-attention residual network for salient object detection. IEEE Trans Circ Syst Video Technol 32(9):5902–5915
Yang S, Lin W, Lin G, Jiang Q, Liu Z (2021) Progressive self-guided loss for salient object detection. IEEE Trans Image Process 30:8426–8438
Feng M, Lu H, Yu Y (2020) Residual learning for salient object detection. IEEE Trans Image Process 29:4696–4708
Wu R, Feng M, Guan W, Wang D, Lu H, Ding E (2019) A mutual learning method for salient object detection with intertwined multi-supervision. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 8142–8151
Zhao X, Pang Y, Zhang L, Lu H, Zhang L (2020) Suppress and balance: A simple gated network for salient object detection. In: European Conference on Computer Vision (ECCV)
Zhou H, Xie X, Lai J-H, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 9138–9147
Mei H, Liu Y, Wei Z, Zhou D, Wei X, Zhang Q, Yang X (2022) Exploring dense context for salient object detection. IEEE Trans Circ Syst Video Technol 32(3):1378–1389
Chen Z, Xu Q, Cong R, Huang Q (2020) Global context-aware progressive aggregation network for salient object detection. In: Association for the Advancement of Artificial Intelligence (AAAI), vol 34, pp 10599–10606
Chen S, Tan X, Wang B, Lu H, Hu X, Fu Y (2020) Reverse attention-based residual network for salient object detection. IEEE Trans Image Process 29:3763–3776
Zhu L, Chen J, Hu X, Fu C-W, Xu X, Qin J, Heng P-A (2020) Aggregating attentional dilated features for salient object detection. IEEE Trans Circ Syst Video Technol 30(10):3358–3371
Liu Y, Cheng M-M, Zhang X-Y, Nie G-Y, Wang M (2022) Dna: Deeply supervised nonlinear aggregation for salient object detection. IEEE Trans Cybern 52(7):6131–6142
Qiu Y, Liu Y, Yang H, Xu J (2020) A simple saliency detection approach via automatic top-down feature fusion. Neurocomputing 388:124–134
Liu Y, Gu Y-C, Zhang X-Y, Wang W, Cheng M-M (2021) Lightweight salient object detection via hierarchical visual perception learning. IEEE Trans Cybern 51(9):4439–4449
Liu Y, Zhang X-Y, Bian J-W, Zhang L, Cheng M-M (2021) Samnet: Stereoscopically attentive multi-scale network for lightweight salient object detection. IEEE Trans Image Process 30:3804–3814
Qiu Y, Liu Y, Ma X, Liu L, Gao H, Xu J (2019) Revisiting multi-level feature fusion: A simple yet effective network for salient object detection. In: 2019 IEEE International Conference on Image Processing (ICIP), pp 4010–4014
Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 13022–13031
Wei J, Wang SH, Huang QM (2019) F3net: Fusion, feedback and focus for salient object detection. In: 2019 IEEE conference on computer vision and pattern recognition, pp 1597–1604
Pang YW, Zhao XQ, Zhang LH, Lu HC (2020) Multi-scale interactive network for salient object detection. In: 2020 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1597–1604
Zhou H, Xie X, Lai J-H, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 9138–9147
Wu Z, Su L, Huang Q (2021) Decomposition and completion network for salient object detection. IEEE Trans Image Process 30:6226–6239
Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255
Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 6848–6856
Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: Computer vision and pattern recognition, pp 116–131
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 4510–4520
Gao SH, Tan YQ, Cheng MM, Lu C, Chen Y, Yan S (2020) Highly efficient salient object detection with 100k parameters. In: The 2020 European conference on computer vision, pp 702–721
Kim J, Han D, Tai Y, Kim J (2016) Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans Image Process 25(1):9–23
Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2017) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832
Cheng M, Mitra NJ, Huang X, Torr PHS, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582
Lu H, Li X, Zhang L, Ruan X, Yang M (Apr2016) Dense and sparse reconstruction error based saliency descriptor. IEEE Trans Image Process 25(4):1592–1603
Wang W, Zhao S, Shen J, Hoi SCH, Borji A (2019) Salient object detection with pyramid attention and salient edges. In: 2019 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1448–1457
Zhao T, Wu X (2019) Pyramid feature attention network for saliency detection. In: IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 3085–3094
Zhang Q, Duanmu M, Luo Y, Liu Y, Han J (2022) Engaging part-whole hierarchies and contrast cues for salient object detection. IEEE Trans Circ Syst Video Technol 32(6):3644–3658
Liu Y, Cheng M-M, Zhang X-Y, Nie G-Y, Wang M (2022) Dna: Deeply supervised nonlinear aggregation for salient object detection. IEEE Trans Cybern 52(7):6131–6142
Liu J-J, Hou Q, Cheng M-M, Feng J, Jiang J (2019) A simple pooling-based design for real-time salient object detection. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3912–3921
Feng M, Lu H, Ding E (2019) Attentive feedback network for boundary-aware salient object detection. In: 2019 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1623–1632
Zhao J, Liu J-J, Fan D-P, Cao Y, Yang J, Cheng M-M (2019) Egnet: Edge guidance network for salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp 8778–8787
Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 13022–13031
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: CoRR, pp 1–14. arXiv:1409.1556
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778
Liu Y, Han J, Zhang Q, Shan C (2020) Deep salient object detection with contextual information guidance. IEEE Trans Image Process 29:360–374
Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on international conference on machine learning, vol 37, pp 448–456
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 32nd international conference on international conference on machine learning, pp 1–8
Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In:2013 IEEE conference on computer vision and pattern recognition, pp 1155–1162
Li G, Yu Y (2015) Visual saliency based on multiscale deep features. In: 2015 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 5455–5463
Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 280–287
Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 3796–3805
Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. In: 2013 IEEE conference on computer vision and pattern recognition, pp 3166–3173
Paszke A et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–C8037
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255
Fan D-P, Cheng M-M, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 4558–4567
Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3902–3911
Wei J, Wang SH, Huang QM (2019) F3net: Fusion, feedback and focus for salient object detection. In 2019 IEEE conference on computer vision and pattern recognition, pp 1597–1604
Liu J-J, Hou Q, Cheng M-M (2020) Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton. IEEE Trans Image Process 29:8652–8667
Yang S, Lin W, Lin G, Jiang Q, Liu Z (2021) Progressive self-guided loss for salient object detection. IEEE Trans Image Process 30:8426–8438
Li J, Su J, Xia C, Ma M, Tian Y (2021) Salient object detection with purificatory mechanism and structural similarity loss. IEEE Trans Image Process 30:6855–6868
Liu J-J, Liu Z-A, Peng P, Cheng M-M (2021) Rethinking the u-shape structure for salient object detection. IEEE Trans Image Process 30:9030–9042
Mei H, Liu Y, Wei Z, Zhou D, Wei X, Zhang Q, Yang X (2022) Exploring dense context for salient object detection. IEEE Trans Circ Syst Video Technol 32(3):1378–1389
Zhang L, Zhang Q, Zhao R (2022) Progressive dual-attention residual network for salient object detection. IEEE Trans Circ Syst Video Technol 32(9):5902–5915
Liu J-J, Hou Q, Liu Z-A, Cheng M-M (2023) Poolnet+: Exploring the potential of pooling for salient object detection. IEEE Trans Pattern Anal Mach Intell 45(1):887–904
Zhuge M, Fan D-P, Liu N, Zhang D, Xu D, Shao L (2023) Salient object detection via integrity learning. IEEE Trans Pattern Anal Mach Intell 45(3):3738–3752
Zhang Q, Zhao R, Zhang L (2023) Tcrnet: A trifurcated cascaded refinement network for salient object detection. IEEE Trans Circ Syst Video Technol 33(1):298–311
Lin T, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 936–C944
Wang L, Wei H (2022) Curved alleyway understanding based on monocular vision in street scenes. IEEE Trans Intell Transp Syst 23(7):8544–8563
Author information
Authors and Affiliations
Contributions
Yiru Wei: Data analysis, Methodology and Writing; Zhiliang Zhu: Formal analysis; Wei Zhang: Validation; Hai Yu: Validation.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Ethical and informed consent for data used
The data used in this study do not involve ethical experiments.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wei, Y., Zhu, Z., Yu, H. et al. GILNet: Grouping interaction learning network for lightweight salient object detection. Appl Intell 55, 15 (2025). https://doi.org/10.1007/s10489-024-05860-w
Accepted:
Published:
DOI: https://doi.org/10.1007/s10489-024-05860-w