[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

GILNet: Grouping interaction learning network for lightweight salient object detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Recently, salient object detection (SOD) has achieved significant progress with the rapid development of convolutional neural networks (CNNs). However, the enhancement of SOD accuracy often comes at the cost of increased network size and computational complexity, hindering the application of existing SOD methods to lightweight devices, particularly robot devices. To address this issue, we propose a lightweight grouping interaction learning network (GILNet) for efficient and effective multi-level feature learning and shared feature aggregation. Specifically, our novel grouping interaction learning module (GIL) enables efficient feature extraction, and based on this module, we construct a lightweight backbone network to extract multi-scale features. Furthermore, we introduce a shared feature aggregation (SFA) module to aggregate these features in a shared manner, and a progressive guidance prediction (PGP) module to gradually refine the saliency predictions. Extensive experiments on five popular benchmarks demonstrate that GILNet yields comparable accuracy with state-of-the-art methods. More importantly, GILNet operates at a GPU speed of 345 frames/s with only 1.21M parameters, representing a significant reduction in computational cost and model size. These results highlight the significance of our method in achieving a better trade-off between accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Algorithm 2
Fig. 4
Algorithm 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability and access

The data that was used is confidential and has not been shared.

References

  1. Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E (2024) Brain image segmentation for ultrascale neuron reconstruction via an adaptive dual-task learning network. IEEE Trans Med Imaging 43(7):2574–2586

    Article  Google Scholar 

  2. Yang J, Jiao L, Shang R, Liu X, Li R, Xu L (2023) Ept-net: Edge perception transformer for 3d medical image segmentation. IEEE Trans Med Imaging 42(11):3229–3243

    Article  Google Scholar 

  3. Liu S, Xu X, Zhang Y, Muhammad K, Fu W (2023) A reliable sample selection strategy for weakly supervised visual tracking. IEEE Trans Reliab 72(1):15–26

  4. Teng Z, Xing J, Wang Q, Zhang B, Fan J (2020) Deep spatial and temporal network for robust visual object tracking. IEEE Trans Image Process 29:1762–1775

    Article  MathSciNet  Google Scholar 

  5. Han L, Paoletti ME, Tao X, Wu Z, Haut JM, Li P, Pastor-Vargas R, Plaza A (2024) Hash-based remote sensing image retrieval. IEEE Trans Geosci Remote Sens 62:1–23

    Google Scholar 

  6. Brogan J, Bharati A, Moreira D, Rocha A, Bowyer KW, Flynn PJ, Scheirer WJ (2021) Fast local spatial verification for feature-agnostic large-scale image retrieval. IEEE Trans Image Process 30:6892–6905

    Article  Google Scholar 

  7. Wu Z, Liu C, Wen J, Xu Y, Yang J, Li X (2023) Selecting high-quality proposals for weakly supervised object detection with bottom-up aggregated attention and phase-aware loss. IEEE Trans Image Process 32:682–693

    Article  Google Scholar 

  8. Zhang Y, Zhou W, Ran X, Fang M (2024) Lightweight dual stream network with knowledge distillation for rgb-d scene parsing. IEEE Signal Process Lett 31:855–859

    Article  Google Scholar 

  9. Zeng H, Li L, Cao Z, Zhang L (2022) Grid anchor based image cropping: A new benchmark and an efficient model. IEEE Trans Pattern Anal Mach Intell 44(3):1304–1319

    Article  Google Scholar 

  10. Zhang P, Wang D, Lu H, Wang H, Ruan X (2017) Amulet: Aggregating multi-level convolutional features for salient object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 202–211

  11. Wang L, Chen R, Zhu L, Xie H, Li X (2021) Deep sub-region network for salient object detection. IEEE Trans Circ Syst Video Technol 31(2):728–741

    Article  Google Scholar 

  12. Li J, Pan Z, Liu Q, Wang Z (2021) Stacked u-shape network with channel-wise attention for salient object detection. IEEE Trans Multimed 23:1397–1409

    Article  Google Scholar 

  13. Li X, Song D, Dong Y (2020) Hierarchical feature fusion network for salient object detection. IEEE Trans Image Process 29:9165–9175

    Article  Google Scholar 

  14. Zhang L, Zhang Q, Zhao R (2022) Progressive dual-attention residual network for salient object detection. IEEE Trans Circ Syst Video Technol 32(9):5902–5915

    Article  Google Scholar 

  15. Yang S, Lin W, Lin G, Jiang Q, Liu Z (2021) Progressive self-guided loss for salient object detection. IEEE Trans Image Process 30:8426–8438

    Article  Google Scholar 

  16. Feng M, Lu H, Yu Y (2020) Residual learning for salient object detection. IEEE Trans Image Process 29:4696–4708

    Article  Google Scholar 

  17. Wu R, Feng M, Guan W, Wang D, Lu H, Ding E (2019) A mutual learning method for salient object detection with intertwined multi-supervision. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 8142–8151

  18. Zhao X, Pang Y, Zhang L, Lu H, Zhang L (2020) Suppress and balance: A simple gated network for salient object detection. In: European Conference on Computer Vision (ECCV)

  19. Zhou H, Xie X, Lai J-H, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 9138–9147

  20. Mei H, Liu Y, Wei Z, Zhou D, Wei X, Zhang Q, Yang X (2022) Exploring dense context for salient object detection. IEEE Trans Circ Syst Video Technol 32(3):1378–1389

    Article  Google Scholar 

  21. Chen Z, Xu Q, Cong R, Huang Q (2020) Global context-aware progressive aggregation network for salient object detection. In: Association for the Advancement of Artificial Intelligence (AAAI), vol 34, pp 10599–10606

  22. Chen S, Tan X, Wang B, Lu H, Hu X, Fu Y (2020) Reverse attention-based residual network for salient object detection. IEEE Trans Image Process 29:3763–3776

    Article  Google Scholar 

  23. Zhu L, Chen J, Hu X, Fu C-W, Xu X, Qin J, Heng P-A (2020) Aggregating attentional dilated features for salient object detection. IEEE Trans Circ Syst Video Technol 30(10):3358–3371

    Article  Google Scholar 

  24. Liu Y, Cheng M-M, Zhang X-Y, Nie G-Y, Wang M (2022) Dna: Deeply supervised nonlinear aggregation for salient object detection. IEEE Trans Cybern 52(7):6131–6142

    Article  Google Scholar 

  25. Qiu Y, Liu Y, Yang H, Xu J (2020) A simple saliency detection approach via automatic top-down feature fusion. Neurocomputing 388:124–134

    Article  Google Scholar 

  26. Liu Y, Gu Y-C, Zhang X-Y, Wang W, Cheng M-M (2021) Lightweight salient object detection via hierarchical visual perception learning. IEEE Trans Cybern 51(9):4439–4449

    Article  Google Scholar 

  27. Liu Y, Zhang X-Y, Bian J-W, Zhang L, Cheng M-M (2021) Samnet: Stereoscopically attentive multi-scale network for lightweight salient object detection. IEEE Trans Image Process 30:3804–3814

    Article  Google Scholar 

  28. Qiu Y, Liu Y, Ma X, Liu L, Gao H, Xu J (2019) Revisiting multi-level feature fusion: A simple yet effective network for salient object detection. In: 2019 IEEE International Conference on Image Processing (ICIP), pp 4010–4014

  29. Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 13022–13031

  30. Wei J, Wang SH, Huang QM (2019) F3net: Fusion, feedback and focus for salient object detection. In: 2019 IEEE conference on computer vision and pattern recognition, pp 1597–1604

  31. Pang YW, Zhao XQ, Zhang LH, Lu HC (2020) Multi-scale interactive network for salient object detection. In: 2020 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1597–1604

  32. Zhou H, Xie X, Lai J-H, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 9138–9147

  33. Wu Z, Su L, Huang Q (2021) Decomposition and completion network for salient object detection. IEEE Trans Image Process 30:6226–6239

    Article  Google Scholar 

  34. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255

  35. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 6848–6856

  36. Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: Computer vision and pattern recognition, pp 116–131

  37. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications

  38. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 4510–4520

  39. Gao SH, Tan YQ, Cheng MM, Lu C, Chen Y, Yan S (2020) Highly efficient salient object detection with 100k parameters. In: The 2020 European conference on computer vision, pp 702–721

  40. Kim J, Han D, Tai Y, Kim J (2016) Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans Image Process 25(1):9–23

    Article  MathSciNet  Google Scholar 

  41. Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2017) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832

    Article  Google Scholar 

  42. Cheng M, Mitra NJ, Huang X, Torr PHS, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  43. Lu H, Li X, Zhang L, Ruan X, Yang M (Apr2016) Dense and sparse reconstruction error based saliency descriptor. IEEE Trans Image Process 25(4):1592–1603

    Article  MathSciNet  Google Scholar 

  44. Wang W, Zhao S, Shen J, Hoi SCH, Borji A (2019) Salient object detection with pyramid attention and salient edges. In: 2019 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1448–1457

  45. Zhao T, Wu X (2019) Pyramid feature attention network for saliency detection. In: IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 3085–3094

  46. Zhang Q, Duanmu M, Luo Y, Liu Y, Han J (2022) Engaging part-whole hierarchies and contrast cues for salient object detection. IEEE Trans Circ Syst Video Technol 32(6):3644–3658

    Article  Google Scholar 

  47. Liu Y, Cheng M-M, Zhang X-Y, Nie G-Y, Wang M (2022) Dna: Deeply supervised nonlinear aggregation for salient object detection. IEEE Trans Cybern 52(7):6131–6142

    Article  Google Scholar 

  48. Liu J-J, Hou Q, Cheng M-M, Feng J, Jiang J (2019) A simple pooling-based design for real-time salient object detection. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3912–3921

  49. Feng M, Lu H, Ding E (2019) Attentive feedback network for boundary-aware salient object detection. In: 2019 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 1623–1632

  50. Zhao J, Liu J-J, Fan D-P, Cao Y, Yang J, Cheng M-M (2019) Egnet: Edge guidance network for salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp 8778–8787

  51. Wei J, Wang S, Wu Z, Su C, Huang Q, Tian Q (2020) Label decoupling framework for salient object detection. In: 2020 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 13022–13031

  52. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. In: CoRR, pp 1–14. arXiv:1409.1556

  53. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778

  54. Liu Y, Han J, Zhang Q, Shan C (2020) Deep salient object detection with contextual information guidance. IEEE Trans Image Process 29:360–374

    Article  MathSciNet  Google Scholar 

  55. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on international conference on machine learning, vol 37, pp 448–456

  56. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 32nd international conference on international conference on machine learning, pp 1–8

  57. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In:2013 IEEE conference on computer vision and pattern recognition, pp 1155–1162

  58. Li G, Yu Y (2015) Visual saliency based on multiscale deep features. In: 2015 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 5455–5463

  59. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) The secrets of salient object segmentation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 280–287

  60. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 3796–3805

  61. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. In: 2013 IEEE conference on computer vision and pattern recognition, pp 3166–3173

  62. Paszke A et al (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–C8037

  63. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255

  64. Fan D-P, Cheng M-M, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 4558–4567

  65. Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3902–3911

  66. Wei J, Wang SH, Huang QM (2019) F3net: Fusion, feedback and focus for salient object detection. In 2019 IEEE conference on computer vision and pattern recognition, pp 1597–1604

  67. Liu J-J, Hou Q, Cheng M-M (2020) Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton. IEEE Trans Image Process 29:8652–8667

    Article  Google Scholar 

  68. Yang S, Lin W, Lin G, Jiang Q, Liu Z (2021) Progressive self-guided loss for salient object detection. IEEE Trans Image Process 30:8426–8438

    Article  Google Scholar 

  69. Li J, Su J, Xia C, Ma M, Tian Y (2021) Salient object detection with purificatory mechanism and structural similarity loss. IEEE Trans Image Process 30:6855–6868

    Article  Google Scholar 

  70. Liu J-J, Liu Z-A, Peng P, Cheng M-M (2021) Rethinking the u-shape structure for salient object detection. IEEE Trans Image Process 30:9030–9042

    Article  Google Scholar 

  71. Mei H, Liu Y, Wei Z, Zhou D, Wei X, Zhang Q, Yang X (2022) Exploring dense context for salient object detection. IEEE Trans Circ Syst Video Technol 32(3):1378–1389

    Article  Google Scholar 

  72. Zhang L, Zhang Q, Zhao R (2022) Progressive dual-attention residual network for salient object detection. IEEE Trans Circ Syst Video Technol 32(9):5902–5915

    Article  Google Scholar 

  73. Liu J-J, Hou Q, Liu Z-A, Cheng M-M (2023) Poolnet+: Exploring the potential of pooling for salient object detection. IEEE Trans Pattern Anal Mach Intell 45(1):887–904

    Article  Google Scholar 

  74. Zhuge M, Fan D-P, Liu N, Zhang D, Xu D, Shao L (2023) Salient object detection via integrity learning. IEEE Trans Pattern Anal Mach Intell 45(3):3738–3752

    Google Scholar 

  75. Zhang Q, Zhao R, Zhang L (2023) Tcrnet: A trifurcated cascaded refinement network for salient object detection. IEEE Trans Circ Syst Video Technol 33(1):298–311

    Article  Google Scholar 

  76. Lin T, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 936–C944

  77. Wang L, Wei H (2022) Curved alleyway understanding based on monocular vision in street scenes. IEEE Trans Intell Transp Syst 23(7):8544–8563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yiru Wei: Data analysis, Methodology and Writing; Zhiliang Zhu: Formal analysis; Wei Zhang: Validation; Hai Yu: Validation.

Corresponding author

Correspondence to Zhiliang Zhu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical and informed consent for data used

The data used in this study do not involve ethical experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Zhu, Z., Yu, H. et al. GILNet: Grouping interaction learning network for lightweight salient object detection. Appl Intell 55, 15 (2025). https://doi.org/10.1007/s10489-024-05860-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-05860-w

Keywords

Navigation