[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rough ideals in lattices

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we consider a relationship between rough sets and lattice theory. The related properties of rough subsets of lattices are investigated. We introduce the notion of rough ideals which is a generalized notion of ideals of a lattice, and some properties and homomorphism of such ideals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Biswas R, Nanda S (1994) Rough groups and rough subgroups. Bull Pol Acad Sci Math 42:251–254

    MathSciNet  MATH  Google Scholar 

  2. Bonikowaski Z (1995) Algebraic structures of rough sets. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery, Springer, Berlin, pp 242–247

    Google Scholar 

  3. Cattaneo G, Ciucci D (2004) Algebraic structures for rough sets. LNCS 3135:208–252

    Google Scholar 

  4. Davey BA, Priestley HA (2002) Introduction to lattices and order. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Davvaz B, Mahdavipour M (2006) Roughness in modules. Inf Sci 176:3658–3674

    Article  MathSciNet  MATH  Google Scholar 

  6. Davvaz B (2006) A new view of approximations in Hv-groups. Soft Comput 10(11):1043–1046

    Article  MATH  Google Scholar 

  7. Davvaz B (2004) Roughness in rings. Inf Sci 164:147–163

    Article  MathSciNet  MATH  Google Scholar 

  8. Davvaz B (2006) Roughness based on fuzzy ideals. Inf Sci 176:2417–2437

    Article  MathSciNet  MATH  Google Scholar 

  9. Davvaz B (2009) Approximations in hyperrings. J Multiple-Valued Logic Soft Comput 15:471–488

    MathSciNet  MATH  Google Scholar 

  10. Davvaz B (2008) Approximations in n-ary algebraic systems. Soft Comput 12:409–418

    Article  MATH  Google Scholar 

  11. Degang C, Wenxiu Z, Yeung D, Tsang ECC (2006) Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Inf Sci 176:1829–1848

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganter B, Wille R (1999) Formal concept analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Iwinski T (1987) Algebraic approach to rough sets. Bull Pol Acad Sci Math 35:673–683

    MathSciNet  MATH  Google Scholar 

  14. Järvinen J (2002) On the structure of rough approximations. Fundamenta Informaticae 53:135–153

    MathSciNet  MATH  Google Scholar 

  15. Kazancı O, Davvaz B (2008) On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings. Inf Sci 178:1343–1354

    Article  MATH  Google Scholar 

  16. Kazancı O, Yamak S, Davvaz B (2008) The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets. Inf Sci 178:2349–2359

    Article  MATH  Google Scholar 

  17. Kuroki N, Wang PP (1996) The lower and upper approximations in a fuzzy group. Inf Sci 90:203–220

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuroki N (1997) Rough ideals in semigroups. Inf Sci 100:139–63

    Article  MathSciNet  MATH  Google Scholar 

  19. Leoreanu-Fotea V, Davvaz B (2008) Roughness in n-ary hypergroups. Inf Sci 178:4114–4124

    Article  MathSciNet  MATH  Google Scholar 

  20. Leoreanu-Fotea V (2008) The lower and upper approximations in a hypergroup. Inf Sci 178:3605–3615

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu G (2008) Generalized rough sets over fuzzy lattices. Inf Sci 178:1651–1662

    Article  MATH  Google Scholar 

  22. Liu G, Zhu W (2008) The algebraic structures of generalized rough set theory. Inf Sci 178:4105–4113

    Article  MathSciNet  MATH  Google Scholar 

  23. Mani A (2011) Choice inclusive general rough semantics. Inf Sci 181:1097–1115

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordeson N (2001) Rough set theory applied to (fuzzy) ideal theory. Fuzzy Sets Syst 121:315–324

    Article  MathSciNet  MATH  Google Scholar 

  25. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  26. Pomykala J, Pomykala JA (1998) The stone algebra of rough sets. Bull Pol Acad Sci Math 36:495–508

    MathSciNet  Google Scholar 

  27. Polkowski L, Skowron A (1996) Rough mereology: a new paradigm for approximate reasoning. Int J Approx Reason 15:333–365

    Article  MathSciNet  MATH  Google Scholar 

  28. Qimei X, Zhenliang Z (2006) Rough prime ideals and rough fuzzy prime ideals in semigroups. Inf Sci 176:725–733

    Article  Google Scholar 

  29. Rasouli S, Davvaz B (2010) Roughness in MV-algebra. Inf Sci 180:737–747

    Article  MathSciNet  MATH  Google Scholar 

  30. Skowron A, Polkowski L (1998) Rough mereological foundations for design, analysis, synthesis, and control in distributed systems. Inf Sci 104:129–56

    Article  MathSciNet  MATH  Google Scholar 

  31. Wenxiu Z, Weizhi W (2001) Theory and method of roughness. Science Press, Beijing

    Google Scholar 

  32. Xueyou C, Li Q (2007) Construction of rough approximations in fuzzy setting. Fuzzy Sets Syst 158:2641–2653

    Article  MATH  Google Scholar 

  33. Yamak S, Kazancı O, Davvaz B (2010) Generalized lower and upper approximations in a ring. Inf Sci 180:1759–1768

    Article  MATH  Google Scholar 

  34. Yunqiang Y, Jianming Z, Corsini P (2011) L-fuzzy roughness of n-ary polygroups. Acta Mathematica Sinica English Series 27:97–118

    Article  MathSciNet  MATH  Google Scholar 

  35. Yunqiang Y, Jianming Z, Corsini P (2011) Fuzzy roughness of n-ary hypergroups based on a complete residuated lattice. Neural Comput Appl 20:41–57

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (No. 11071061) and the National Basic Research Program (No. 2011CB311808), Educational Commission of Hunan Province, China (No. 11C0051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Q., Li, Q. & Zhou, X. Rough ideals in lattices. Neural Comput & Applic 21 (Suppl 1), 245–253 (2012). https://doi.org/10.1007/s00521-011-0801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0801-5

Keywords

Navigation