[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Entropic sampling in genetic-entropic algorithm

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1285))

Included in the following conference series:

  • 130 Accesses

Abstract

A new combinatorial optimization algorithm, genetic-entropic algorithm, is proposed. Based on the entropic sampling, this algorithm shows better performance than the conventional genetic algorithm. We, in particular, test the algorithm using the NK-model. The higher rugged ness of the K value, the better this algorithm performs. The characteristics of the entropic sampling in this algorithm together with the difference between two algorithms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kirkpatrick, C.D. Gelatt,Jr., M.P. Vecchi, “Optimization by Simulated Annealing”, Science 220 671 (1983).

    Google Scholar 

  2. J.H. Holland, Adaptation in Natural and Artificial Systems, 2nd Edition. Cambridge, MA:MIT Press (1992).

    Google Scholar 

  3. Jooyoung Lee, “New Monte Carlo Algorithm: Entropic Sampling”, Phys. Rev. Lett. 71 211 (1993).

    Google Scholar 

  4. Kang Ku Lee and Seung Kee Han, “Entropic and Boltzmann Selection in the Genetic Algorithm and Traveling Salesman Problem”, in A proceedings of International Conference on Neural Information Processing 162 (1994).

    Google Scholar 

  5. Jooyoung Lee and M.Y. Choi, “Optimization by Multicanonical Annealing and the Traveling Salesman Problem”, Phys. Rev. E 50 R651 (1994).

    Google Scholar 

  6. S.A. Kauffman, “Adaptation on Rugged Fitness Landscapes.” In Lectures in the Science of Complexity, edited by D. Stein. Santa Fe Institute Studies in the Science of Complexity, Lect. Vol.I, 527–618, Addison Wesley (1989).

    Google Scholar 

  7. E.D. Weinberger, “Local Properties of Kauffamn's NK-model”, Phys. Rev. A 44 6399 (1991).

    Google Scholar 

  8. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, “Equation of State Calculations for Fast Computing Landscape”, J. Chem. Phys. 21 1087 (1953).

    Google Scholar 

  9. S.-H. Oh and Y. Lee, “A modified error function to improve the error backpropagation algorithm for Multi-Layer Perceptrons”, ETRI Journal 17 no.1, 11 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xin Yao Jong-Hwan Kim Takeshi Furuhashi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leeb, CY., Han, S.K. (1997). Entropic sampling in genetic-entropic algorithm. In: Yao, X., Kim, JH., Furuhashi, T. (eds) Simulated Evolution and Learning. SEAL 1996. Lecture Notes in Computer Science, vol 1285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028521

Download citation

  • DOI: https://doi.org/10.1007/BFb0028521

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63399-0

  • Online ISBN: 978-3-540-69538-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics