Abstract
A general class of piecewise functions is described which leads to the same order of convergence of collocation methods as piecewise polynomials. This order only depends on the collocation points used.
Zusammenfassung
Es wird eine für Kollokationsverfahren geeignete allgemeine Klasse von Ansatzfunktionen charakterisiert, die die gleiche Konvergenzordnung wie ein Polynomansatz sichert. Dabei hängt diese Ordnung ausschließlich von der Wahl der Kollokationsstellen ab.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brunner, H.: Recursive collocation for the numerical solution of stiff ordinary differential equations. Math. Comp.28, 475–481 (1974).
Callender, E. D.: Single step methods and low order splines for solutions of ordinary, differential equations. SIAM J. Num. Anal.8, 61–66 (1971).
Chipman, F. H.: Numerical solution of initial value problems using A-stable Runge-Kutta processes. Dept. A. A. C. S., Res. Report CSRR 2042 (1971).
Hulme, B. L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comp.26, 881–891 (1972).
Kramarz, L.: Global approximations to solutions of inital value problems. Math. Comp.32, 35–59 (1978).
Mäkelä, M.: On a generalized interpolation approach to the numerical integration of ordinary differential equations. Ann. Acad. Sci. Fenn, Ser.A I, 503 (1971).
Norsett, S. P., Wanner, G.: The real-pole sandwich for rational approximations and oscillation equations. BIT19, 79–94 (1979).
Werner, H.: Interpolation and integration of initial value problems of ordinary differential equations by regular splines. SIAM J. Num. Anal.12, 255–271 (1975).
Wouk, A.: Collocation for initial value problems. BIT16, 215–222 (1976).
Wright, K.: Some relationships between implicit Runge-Kutta, collocation and Lanczos τ methods, and their stability properties. BIT10, 217–227 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Keller, G. Numerical solution of initial-value problems by collocation methods using generalized piecewise functions. Computing 28, 199–211 (1982). https://doi.org/10.1007/BF02241748
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02241748