[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical solution of initial-value problems by collocation methods using generalized piecewise functions

Kollokationsverfahren mit allgemeineren Ansatzfunktionen zur numerischen Lösung von Anfangswertaufgaben

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A general class of piecewise functions is described which leads to the same order of convergence of collocation methods as piecewise polynomials. This order only depends on the collocation points used.

Zusammenfassung

Es wird eine für Kollokationsverfahren geeignete allgemeine Klasse von Ansatzfunktionen charakterisiert, die die gleiche Konvergenzordnung wie ein Polynomansatz sichert. Dabei hängt diese Ordnung ausschließlich von der Wahl der Kollokationsstellen ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brunner, H.: Recursive collocation for the numerical solution of stiff ordinary differential equations. Math. Comp.28, 475–481 (1974).

    Google Scholar 

  2. Callender, E. D.: Single step methods and low order splines for solutions of ordinary, differential equations. SIAM J. Num. Anal.8, 61–66 (1971).

    Google Scholar 

  3. Chipman, F. H.: Numerical solution of initial value problems using A-stable Runge-Kutta processes. Dept. A. A. C. S., Res. Report CSRR 2042 (1971).

  4. Hulme, B. L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comp.26, 881–891 (1972).

    Google Scholar 

  5. Kramarz, L.: Global approximations to solutions of inital value problems. Math. Comp.32, 35–59 (1978).

    Google Scholar 

  6. Mäkelä, M.: On a generalized interpolation approach to the numerical integration of ordinary differential equations. Ann. Acad. Sci. Fenn, Ser.A I, 503 (1971).

    Google Scholar 

  7. Norsett, S. P., Wanner, G.: The real-pole sandwich for rational approximations and oscillation equations. BIT19, 79–94 (1979).

    Google Scholar 

  8. Werner, H.: Interpolation and integration of initial value problems of ordinary differential equations by regular splines. SIAM J. Num. Anal.12, 255–271 (1975).

    Google Scholar 

  9. Wouk, A.: Collocation for initial value problems. BIT16, 215–222 (1976).

    Google Scholar 

  10. Wright, K.: Some relationships between implicit Runge-Kutta, collocation and Lanczos τ methods, and their stability properties. BIT10, 217–227 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, G. Numerical solution of initial-value problems by collocation methods using generalized piecewise functions. Computing 28, 199–211 (1982). https://doi.org/10.1007/BF02241748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241748

Key words

Navigation