[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Diophantine approximations on projective spaces

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  • [BV] Bombieri, E., Vaaler, J.: On Siegel's Lemma. Invent. Math.73, 11–32 (1983)

    Google Scholar 

  • [Fa] Faltings, G.: Diophantine Approximation on Abelian Varieties. Ann. Math.129, 549–576 (1991)

    Google Scholar 

  • [Ma] Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press (1989)

    Google Scholar 

  • [NS] Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math.82, 540–567 (1965)

    Google Scholar 

  • [S1] Schmidt, W.M.: Approximation to Algebraic numbers. Enseign. Math.17, 187–253 (1971)

    Google Scholar 

  • [S2] Schmidt, W.M.: Diophantine Approximation. (Lect. Notes Math., vol. 785) Berlin Heidelberg New York: Springer (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 10-II-1993

To Armand Borel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faltings, G., Wüstholz, G. Diophantine approximations on projective spaces. Invent Math 116, 109–138 (1994). https://doi.org/10.1007/BF01231559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01231559

Keywords

Navigation