[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

New Trends in Laser Scanning for Cultural Heritage

  • Chapter
  • First Online:
New Technologies in Building and Construction

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 258))

Abstract

The arrival on the market of solid-state LiDAR sensors is generating a series of low-cost devices very attractive to end users. However, the characteristics of low-cost devices do not allow the same use and applications as conventional LiDAR systems. The aim of this work is to compare three LiDAR systems in a typical heritage application: stone individualisation in masonry walls. The system used is one terrestrial laser scanner, Faro X330, and two handheld mobile laser scanners, Zeb-Go and iPad Pro. The case study is an original seventeenth-century gate whose two façades show regular and irregular masonry pattern. Through an analysis of the acquisition process, registration, point density, curvature calculation (for joint detection) and stone individualisation, advantages and disadvantages of each device are discussed. The point cloud acquired with a single scan of Faro X330 was the only one that showed a satisfactory result for stone individualisation, while Zeb-Go and iPad Pro acquisitions were shown to be a fast solution to quickly acquire complete models with a lower level of detail. In the case of the iPad Pro, it is also a low-cost and accessible solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang K, Bi S, Dong M (2020) Lightningnet: fast and accurate semantic segmentation for autonomous driving based on 3D LIDAR point cloud. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp 1–6

    Google Scholar 

  2. Crommelinck S, Höfle B (2016) Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements. Remote Sens 8

    Google Scholar 

  3. Poux F, Billen R (2019) A smart point cloud infrastructure for intelligent environments. In: Laser Scanning. CRC Press, pp 127–149

    Google Scholar 

  4. Huang X, Mei G, Zhang J (2020) Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11366–11374

    Google Scholar 

  5. Nurunnabi A, West G, Belton D (2015) Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recognit 48:1404–1419. https://doi.org/10.1016/j.patcog.2014.10.014

  6. Balado J, Arias P, Lorenzo H, Meijide-Rodríguez A (2021) Disturbance analysis in the classification of objects obtained from Urban LiDAR point clouds with convolutional neural networks. Remote Sens 13

    Google Scholar 

  7. Stenz U, Hartmann J, Paffenholz J-A, Neumann I (2020) High-precision 3D object capturing with static and kinematic terrestrial laser scanning in industrial applications—approaches of quality assessment. Remote Sens 12

    Google Scholar 

  8. Balado J, Díaz-Vilariño L, Azenha M, Lourenço PB (2021) Automatic detection of surface damage in round brick chimneys by finite plane modelling from terrestrial laser scanning point clouds. Case Study of Bragança Dukes’ Palace, Guimarães, Portugal. Int J Archit Herit 1–15. https://doi.org/10.1080/15583058.2021.1925779

  9. Wojtkowska M, Kedzierski M, Delis P (2021) Validation of terrestrial laser scanning and artificial intelligence for measuring deformations of cultural heritage structures. Measurement 167:108291. https://doi.org/10.1016/j.measurement.2020.108291

  10. Yang H, Xu X (2020) Intelligent crack extraction based on terrestrial laser scanning measurement. Meas Control 53:416–426. https://doi.org/10.1177/0020294019877490

    Article  Google Scholar 

  11. Xu X, Yang H (2019) Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement. Adv Mech Eng 11:1687814019872650. https://doi.org/10.1177/1687814019872650

    Article  Google Scholar 

  12. Cho S, Park S, Cha G, Oh T (2018) Development of image processing for crack detection on concrete structures through terrestrial laser scanning associated with the octree structure. Appl. Sci 8

    Google Scholar 

  13. Yang H, Xu X, Neumann I (2018) Deformation behavior analysis of composite structures under monotonic loads based on terrestrial laser scanning technology. Compos Struct 183:594–599. https://doi.org/10.1016/j.compstruct.2017.07.011

  14. Yang H, Xu X, Xu W, Neumann I (2017) Terrestrial laser scanning-based deformation analysis for arch and beam structures. IEEE Sens J 17:4605–4611. https://doi.org/10.1109/JSEN.2017.2709908

    Article  Google Scholar 

  15. Mora R, Martín-Jiménez JA, Lagüela S, González-Aguilera D (2021) Automatic point-cloud registration for quality control in building works. Appl Sci 11

    Google Scholar 

  16. Leroux B, Cali J, Verdun J, et al (2017) Assessing the reliability and the accuracy of attitude extracted from visual odometry for LIDAR data georeferencing. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci 42W6:201–208. https://doi.org/10.5194/isprs-archives-XLII-2-W6-201-2017

  17. Nikoohemat S, Peter M, Oude Elberink S, Vosselman G (2017) Exploiting indoor mobile laser scanner trajectories for semantic interpretation of point clouds. ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV-2/W4:355–362. https://doi.org/10.5194/isprs-annals-IV-2-W4-355-2017

  18. Nikoohemat S, Peter M, Oude Elberink S, Vosselman G (2018) Semantic interpretation of mobile laser scanner point clouds in indoor scenes using trajectories. Remote Sens 10

    Google Scholar 

  19. Westling F, Mahmud K, Underwood J, Bally I (2020) Replacing traditional light measurement with LiDAR based methods in orchards. Comput Electron Agric 179:105798. https://doi.org/10.1016/j.compag.2020.105798

  20. Gong Z, Li J, Luo Z et al (2021) Mapping and semantic modeling of underground parking lots using a backpack LiDAR system. IEEE Trans Intell Transp Syst 22:734–746. https://doi.org/10.1109/TITS.2019.2955734

    Article  Google Scholar 

  21. Chen P, Shi W, Bao S et al (2021) Low-drift odometry, mapping and ground segmentation using a backpack LiDAR system. IEEE Robot Autom Lett 6:7285–7292. https://doi.org/10.1109/LRA.2021.3097060

    Article  Google Scholar 

  22. Su Y, Guo Q, Jin S et al (2021) The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory. IEEE Geosci Remote Sens Lett 18:1660–1664. https://doi.org/10.1109/LGRS.2020.3005166

    Article  Google Scholar 

  23. Filgueira AA, Arias P, Bueno M (2016) Novel inspection system, backpack-based, for 3D modelling of indoor scenes

    Google Scholar 

  24. Otero R, Lagüela S, Garrido I, Arias P (2020) Mobile indoor mapping technologies: a review. Autom Constr 120:103399. https://doi.org/10.1016/j.autcon.2020.103399

  25. Zhang D, Gong Z, Chen Y, et al (2019) Slam-based multi-sensor backpack lidar systems in gnss-denied environments. In: IGARSS 2019—2019 IEEE international geoscience and remote sensing symposium, pp 8984–8987

    Google Scholar 

  26. Taheri H, Xia ZC (2021) SLAM; definition and evolution. Eng Appl Artif Intell 97:104032. https://doi.org/10.1016/j.engappai.2020.104032

  27. Bahraini MS, Rad AB, Bozorg M (2019) SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC Algorithm. Sensors 19

    Google Scholar 

  28. Zhang A, Atia MM (2020) Comparison of 2D localization using radar and LiDAR in long corridors. In: 2020 IEEE Sens 1–4

    Google Scholar 

  29. Bauwens S, Bartholomeus H, Calders K, Lejeune P (2016) Forest inventory with terrestrial LiDAR: a comparison of static and hand-held mobile laser scanning. For 7

    Google Scholar 

  30. Oniga VE, Breaban AI, Alexe EI, Văsii C (2021) Indoor mapping of a complex cultural heritage scene using Tls and Hmls laser scanning. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 43B2:605–612. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-605-2021

  31. Hu S, Wang D, Xu S (2016) 3D indoor modeling using a hand-held embedded system with multiple laser range scanners. Proc SPIE

    Google Scholar 

  32. Parent JR, Witharana C, Bradley M (2021) Mapping building interiors with lidar: classifying the point cloud with arcgis. Int Arch Photogramm Remote Sens Spat Inf Sci XLIV-M-3–2:133–137. https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-133-2021

  33. Poulton CV, Yaacobi A, Cole DB et al (2017) Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt Lett 42:4091–4094. https://doi.org/10.1364/OL.42.004091

    Article  Google Scholar 

  34. Li C, Cao X, Wu K et al (2021) Blind zone-suppressed hybrid beam steering for solid-state Lidar. Photon Res 9:1871–1880. https://doi.org/10.1364/PRJ.424393

    Article  Google Scholar 

  35. García-Gómez P, Royo S, Rodrigo N, Casas JR (2020) Geometric model and calibration method for a solid-state LiDAR. Sens 20

    Google Scholar 

  36. Concello de Salvaterra Portal da Inquisición. https://turismo.concellodesalvaterra.org/pazo-casa-inquisicion. Accessed 1 Dec 2021

  37. Kajatin R, Nalpantidis L (2021) Image Segmentation of bricks in masonry wall using a fusion of machine learning algorithms. In: Proceedings of ICPR 2020 workshop on pattern recognition in construction and the built environment. Springer, pp 446–461

    Google Scholar 

  38. Ibrahim Y, Nagy B, Benedek C (2020) Deep learning-based masonry wall image analysis. Remote Sens 12

    Google Scholar 

  39. Valero E, Bosché F, Forster A (2018) Automatic segmentation of 3D point clouds of rubble masonry walls, and its application to building surveying, repair and maintenance. Autom Constr 96:29–39. https://doi.org/10.1016/j.autcon.2018.08.018

  40. Milani G, Esquivel YW, Lourenço PB et al (2013) Characterization of the response of quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal. Eng Struct 56:621–641

    Article  Google Scholar 

  41. Sithole G (2008) Detection of bricks in a masonry wall. Int Arch Photogramm Remote Sens Spat Inf Sci 1–6

    Google Scholar 

  42. Weinmann M, Jutzi B, Mallet C (2014) Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II–3:181–188. https://doi.org/10.5194/isprsannals-II-3-181-2014

Download references

Acknowledgements

This project has received funding from Xunta de Galicia through human resources grant (ED481B-2019-061) and competitive reference group (ED431C 2016-038) and from the Government of Spain through project PID2019-105221RB-C43 funded by MCIN/AEI/10.13039/501100011033, through project PDC2021-121239-C32 funded by MCIN/AEI/10.13039/501100011033 and “NextGenerationEU”/PRTR and through human resources grant RYC2020-029193-I funded by MCIN/AEI/ 10.13039/501100011033 y FSE \“El FSE invierte en tu futuro”. This document reflects only the views of the authors. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Balado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balado, J., Frías, E., González-Collazo, S.M., Díaz-Vilariño, L. (2022). New Trends in Laser Scanning for Cultural Heritage. In: Bienvenido-Huertas, D., Moyano-Campos, J. (eds) New Technologies in Building and Construction. Lecture Notes in Civil Engineering, vol 258. Springer, Singapore. https://doi.org/10.1007/978-981-19-1894-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1894-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1893-3

  • Online ISBN: 978-981-19-1894-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics