[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fine-Grained Image Categorization with Fisher Vector

  • Conference paper
  • First Online:
Bio-inspired Computing – Theories and Applications (BIC-TA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 682))

  • 1169 Accesses

Abstract

Fine-grained image categorization is a categorization task, where classifying objects should be the same basic-level class and have similar shape or visual appearances. Generally, the bag-of-words (BoW) model is popular in image categorization. However, in BoW model, the feature quantization for image representation is also a lossy process, which severely limits the descriptive power of the image representation. Fisher vectors employ soft assignments and reduce information loss due to quantization by calculating the gradient for each parameter separately, which have been shown to outperform other global representations on most benchmark datasets. In this paper, the acquired template is represented by Fisher Vector (FV). Combing FV with improved spatial pyramid matching (SPM) respectively, we use an approach, i.e., FV+SPM, to obtain feature representation. Experimental results show that our method outperforms state-of-the-art categorization approaches on the Caltech-UCSD Birds dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biederman, I., Subramaniam, S., Bar, M., et al.: Subordinate-level object classification reexamined. Psychol. Res. 62(2–3), 131–153 (1999)

    Article  Google Scholar 

  2. Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_32

    Chapter  Google Scholar 

  3. Hillel, A., Weinshall, D.: Subordinate class recognition using relational object models. In: NIPS, pp. 73–80 (2006)

    Google Scholar 

  4. Yang, J., Yu, K., Gong, Y., et al.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)

    Google Scholar 

  5. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: CVPR, pp. 1470–1478 (2003)

    Google Scholar 

  6. Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: BMVC, pp. 23.1–23.11 (2009)

    Google Scholar 

  7. Yao, B.B., Bradski, G., Li, F.F.: A codebook-free, annotation-free approach for fine-grained image categorization. In: CVPR, pp. 3466–3473 (2012)

    Google Scholar 

  8. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)

    Google Scholar 

  9. Sánchez, J., Perronnin, F., Mensink, T.: Image classification with the Fisher Vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  11. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  12. Zhang, J., Marszalek, M., Lazebnik, S., et al.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2005)

    Article  Google Scholar 

  13. Liu, H., Su, Z.: Template-based multiple codebooks generation for fine-grained shopping classification, retrieval. In: ICDH, pp. 293–298 (2014)

    Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. VandeSande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  16. Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture, shape features. In: ADCOM, pp. 780–784 (2007)

    Google Scholar 

  17. Yu, J., Qin, Z., Wan, T., et al.: Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120, 355–364 (2013)

    Article  Google Scholar 

  18. Li, L.J., Su, H., Xing, E., Li, F.F.: Object bank: a high-level image representation for scene classification and semantic feature sparsification. In: NIPS, vol. 26, no. 6, pp. 719–729 (2010)

    Google Scholar 

  19. Maji, S., Bourdev, L., Malik, J.: Action recognition from a distributed representation of pose, appearance. In: CVPR, pp. 3177–3184 (2011)

    Google Scholar 

  20. Coates, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS, pp. 215–233 (2011)

    Google Scholar 

  21. Farrell, R., Oza, O., Zhang, N., Birdlets, et al.: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp. 809–818 (2011)

    Google Scholar 

  22. Yao, B.B., Khosla, A., Li, F.F.: Combining randomization, discrimination for fine-grained image categorization. In: CVPR, pp. 1577–1584 (2011)

    Google Scholar 

  23. Welinder, P., Branson, S., Mita, T., et al.: Caltech-UCSD birds 200. Technical report, Caltech (2010)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 61571342, 61573267, 61473215, and National Basic Research Program of China under Grant 2013CB329402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Tian, X., Ding, X., Jiao, L. (2016). Fine-Grained Image Categorization with Fisher Vector. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-10-3614-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3614-9_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3613-2

  • Online ISBN: 978-981-10-3614-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics