Abstract
Fine-grained image categorization is a categorization task, where classifying objects should be the same basic-level class and have similar shape or visual appearances. Generally, the bag-of-words (BoW) model is popular in image categorization. However, in BoW model, the feature quantization for image representation is also a lossy process, which severely limits the descriptive power of the image representation. Fisher vectors employ soft assignments and reduce information loss due to quantization by calculating the gradient for each parameter separately, which have been shown to outperform other global representations on most benchmark datasets. In this paper, the acquired template is represented by Fisher Vector (FV). Combing FV with improved spatial pyramid matching (SPM) respectively, we use an approach, i.e., FV+SPM, to obtain feature representation. Experimental results show that our method outperforms state-of-the-art categorization approaches on the Caltech-UCSD Birds dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biederman, I., Subramaniam, S., Bar, M., et al.: Subordinate-level object classification reexamined. Psychol. Res. 62(2–3), 131–153 (1999)
Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_32
Hillel, A., Weinshall, D.: Subordinate class recognition using relational object models. In: NIPS, pp. 73–80 (2006)
Yang, J., Yu, K., Gong, Y., et al.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)
Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: CVPR, pp. 1470–1478 (2003)
Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: BMVC, pp. 23.1–23.11 (2009)
Yao, B.B., Bradski, G., Li, F.F.: A codebook-free, annotation-free approach for fine-grained image categorization. In: CVPR, pp. 3466–3473 (2012)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)
Sánchez, J., Perronnin, F., Mensink, T.: Image classification with the Fisher Vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR, pp. 1–8 (2007)
Zhang, J., Marszalek, M., Lazebnik, S., et al.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2005)
Liu, H., Su, Z.: Template-based multiple codebooks generation for fine-grained shopping classification, retrieval. In: ICDH, pp. 293–298 (2014)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
VandeSande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)
Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture, shape features. In: ADCOM, pp. 780–784 (2007)
Yu, J., Qin, Z., Wan, T., et al.: Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120, 355–364 (2013)
Li, L.J., Su, H., Xing, E., Li, F.F.: Object bank: a high-level image representation for scene classification and semantic feature sparsification. In: NIPS, vol. 26, no. 6, pp. 719–729 (2010)
Maji, S., Bourdev, L., Malik, J.: Action recognition from a distributed representation of pose, appearance. In: CVPR, pp. 3177–3184 (2011)
Coates, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS, pp. 215–233 (2011)
Farrell, R., Oza, O., Zhang, N., Birdlets, et al.: Subordinate categorization using volumetric primitives and pose-normalized appearance. In: ICCV, pp. 809–818 (2011)
Yao, B.B., Khosla, A., Li, F.F.: Combining randomization, discrimination for fine-grained image categorization. In: CVPR, pp. 1577–1584 (2011)
Welinder, P., Branson, S., Mita, T., et al.: Caltech-UCSD birds 200. Technical report, Caltech (2010)
Acknowledgment
This work was supported by the National Natural Science Foundation of China under Grant 61571342, 61573267, 61473215, and National Basic Research Program of China under Grant 2013CB329402.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tian, X., Ding, X., Jiao, L. (2016). Fine-Grained Image Categorization with Fisher Vector. In: Gong, M., Pan, L., Song, T., Zhang, G. (eds) Bio-inspired Computing – Theories and Applications. BIC-TA 2016. Communications in Computer and Information Science, vol 682. Springer, Singapore. https://doi.org/10.1007/978-981-10-3614-9_51
Download citation
DOI: https://doi.org/10.1007/978-981-10-3614-9_51
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3613-2
Online ISBN: 978-981-10-3614-9
eBook Packages: Computer ScienceComputer Science (R0)