[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GRF-GMM: A Trajectory Optimization Framework for Obstacle Avoidance in Learning from Demonstration

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

  • 904 Accesses

Abstract

Learning from demonstrations (LfD) provides a convenient pattern to teach robot to gain skills without mechanically programming. As an LfD approach, Gaussian mixture model/Gaussian mixture regression (GMM/GMR) has been widely used for its robustness and effectiveness. However, there still exist many problems of GMM when an obstacle, which is not presented in original demonstrations, appears in the workspace of robots. To address these problems, this paper presents a novel method based on Gaussian repulsive field-Gaussian mixture model (GRF-GMM) for obstacle avoidance by optimizing the model parameters. A Gaussian repulsive force is calculated through Gaussian functions and employed to work on Gaussian components to optimize the mixture distribution which is learnt from original demonstrations. Our approach allows the reproduced trajectory to keep a safe distance away from the obstacle. Finally, the feasibility and effectiveness of the proposed method are revealed through simulations and experiments.

This work is partially supported by the National Natural Science Foundation of China (62173352, 62006254), the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ23207), and the Guangdong Basic and Applied Basic Research Foundation (2021A1515012314).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, Z., Hu, H.: Robot learning from demonstration in robotic assembly: a survey. Robotics 7(2), 17 (2018)

    Article  Google Scholar 

  2. Chen, D., Li, G., Zhou, D., Ju, Z.: A novel curved gaussian mixture model and its application in motion skill encoding. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7813–7818 (2021). https://doi.org/10.1109/IROS51168.2021.9636121

  3. Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst., Man, Cybern. Part B (Cybernetics) 37(2), 286–298 (2007)

    Google Scholar 

  4. Calinon, S., Alizadeh, T., Caldwell, D.G.: On improving the extrapolation capability of task-parameterized movement models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 610–616 (2013)

    Google Scholar 

  5. Guenter, F., Hersch, M., Calinon, S., Billard, A.: Reinforcement learning for imitating constrained reaching movements. Adv. Robot. 21(13), 1521–1544 (2007)

    Article  Google Scholar 

  6. Chen, J., Lau, H.Y., Xu, W., Ren, H.: Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning. In: Eighth International Conference on Advanced Computational Intelligence, pp. 378–384 (2016)

    Google Scholar 

  7. Zhang, H., Han, X., Fu, M., Zhou, W.: Robot obstacle avoidance learning based on mixture models. J. Robot. 2016, 1–14 (2016)

    Google Scholar 

  8. Li, W., Cheng, H., Liang, Z., Xiao, J., Zhang, X.: Adaptive obstacle avoidance optimization algorithm based on learning from demonstration. In: IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, pp. 447–452 (2021). https://doi.org/10.1109/CYBER53097.2021.9588300

  9. Wang, Y., Hu, Y., El Zaatari, S., Li, W., Zhou, Y.: Optimised learning from demonstrations for collaborative robots. Robot. Comput.-Integr. Manufact. 71, 102169 (2021)

    Article  Google Scholar 

  10. Li, X., Cheng, H., Liang, X.: Adaptive motion planning framework by learning from demonstration. Ind. Robot. 46(4), 541–552 (2019)

    Article  Google Scholar 

  11. Osa, T., Esfahani, A.M.G., Stolkin, R., Lioutikov, R., Peters, J., Neumann, G.: Guiding trajectory optimization by demonstrated distributions. IEEE Robot. Autom. Lett. 2(2), 819–826 (2017)

    Article  Google Scholar 

  12. Chi, M., Yao, Y., Liu, Y., Zhong, M.: Learning, generalization, and obstacle avoidance with dynamic movement primitives and dynamic potential fields. Appl. Sci. 9(8), 1535 (2019)

    Article  Google Scholar 

  13. Koert, D., Maeda, G., Lioutikov, R., Neumann, G., Peters, J.: Demonstration based trajectory optimization for generalizable robot motions. In: IEEE-RAS 16th International Conference on Humanoid Robots, pp. 515–522 (2016)

    Google Scholar 

  14. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: Stomp: stochastic trajectory optimization for motion planning. In: IEEE International Conference on Robotics and Automation, pp. 4569–4574 (2011)

    Google Scholar 

  15. Duan, A., et al.: Learning to avoid obstacles with minimal intervention control. Front. Robot. AI 7, 60 (2020)

    Article  Google Scholar 

  16. Tan, H., Erdemir, E., Kawamura, K., Du, Q.: A potential field method-based extension of the dynamic movement primitive algorithm for imitation learning with obstacle avoidance. In: IEEE International Conference on Mechatronics and Automation, pp. 525–530 (2011)

    Google Scholar 

  17. MacQueen, J.: Classification and analysis of multivariate observations. In: 5th Berkeley Symp. Math. Statist. Probability, pp. 281–297. University of California Los Angeles LA USA (1967)

    Google Scholar 

  18. Tian, Y., Zhu, X., Meng, D., Wang, X., Liang, B.: An overall configuration planning method of continuum hyper-redundant manipulators based on improved artificial potential field method. IEEE Robot. Autom. Lett. 6(3), 4867–4874 (2021)

    Article  Google Scholar 

  19. Mok, J., Lee, Y., Ko, S., Choi, I., Choi, H.S.: Gaussian-mixture based potential field approach for uav collision avoidance. In: 56th Annual Conference of the Society of Instrument and Control Engineers of Japan, pp. 1316–1319 (2017)

    Google Scholar 

  20. Huang, Y., Rozo, L., Silvério, J., Caldwell, D.G.: Kernelized movement primitives. Int. J. Robot. Res. 38(7), 833–852 (2019)

    Article  Google Scholar 

  21. Zucker, M., et al.: Chomp: covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)

    Article  Google Scholar 

  22. Sylvain, C.: Robot programming by demonstration: a probabilistic approach (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, B., Yu, P., Hu, C., Qiu, B., Tan, N. (2024). GRF-GMM: A Trajectory Optimization Framework for Obstacle Avoidance in Learning from Demonstration. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics